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Summary

The sequence of paired, a pair-rule gene required for
segmentation in Drosophila, is presented. A search
for genes with domains homologous to the paired
gene was initiated and three homologues from a set of
12 were characterized with respect to temporal or spa-
tial expression and sequence homologies. All four are
transcribed in early development, one in the oocyte
and during cleavage stages in the form of a gradient.
In addition to the prd-specific his-pro repeat, some of
the 12 genes contain M-repeats and two new types of
homeo boxes not detectable by hybridization with the
two known classes of homeo boxes. The observed
linking of gene sets through combinations of homolo-
gies coding for protein domains is consistent with a
general network concept of gene action.

Introduction

The genetic analysis of the bithorax complex in Drosoph-
ila led Lewis to the conclusion that complex genes with
related functions in development evolved from a smaller
number of ancestral genes by gene duplication and sub-
sequent specialization (Lewis, 1978). It has become in-
creasingly clear during recent years that proteins and
their genes may be further subdivided into functional do-
mains that are subject to recombination and independent
assortment (Gilbert, 1978; Gilbert et al., 1986). The first
concept implies that functions that are retained or modi-
fied are expected to appear as partly conserved DNA se-
quences of either a cis-acting regulatory nature or coding
for protein domains. Genes sharing such a homologous
DNA or protein domain we define as a gene set. Indepen-
dent assortment of domains has the interesting conse-
quence that a particular gene may belong to more than
one set of genes. This is a novel feature not encountered
in gene families defined by the conservation of the entire
gene and has been used by Doolittle to characterize su-
perfamilies (Doolittle, 1981). An illustration of this concept
whose general significance has not been recognized is
the occurrence of a homeo box associated with some
genes of the M-repeat set (McGinnis et al., 1984a; Regul-
ski et al., 1985; Kuroiwa et al., 1985; Laughon et al., 1985).
In its generalized form, the concept predicts that any mul-
tidomain gene shares sequences with several gene sets.
Systematic searches may therefore be initiated to find
these sets. Because of our interest in development, we ap-

plied this approach to the recently isolated segmentation
gene paired (prd) of Drosophila (Kilchherr et al., 1986) and
found the PRD gene set. In addition, we indeed discov-
ered that some of its members contain other homologies,
such as M-repeats and two new types of homeo boxes.

Results

Sequence of the prd Gene

The prd gene was sequenced using the strategy de-
scribed in Experimental Procedures (Figure 10). The fol-
lowing features of the prd gene sequence are of interest
(Figure 1). The longest open reading frame starts with the
ATG at position 497 and codes for a possible protein of 613
amino acids terminated by an amber codon at position
2692. All three reading frames upstream of the ATG are
closed. The termination signal is followed by 330 or 331
bases of untranslated trailer sequence comprising the ca-
nonical poly (A) addition sequence AATAAA, 28 or 29
nucieotides from its end. The open reading frame is inter-
rupted by a 356 bp intron after the first 22 amino acids.
The 5’ end of the prd transcript has not yet been deter-
mined. The following points suggest, however, that it is lo-
cated between the Pvull site, at the beginning of the se-
quence shown in Figure 1, and the 5’ end of the ¢7340.4
cDNA at position 252. The length of the prd transcript as
determined by Northern analysis is about 2.5 kb (Kilchherr
et al., 1986) and is similar to the cDNA distance of 2418
nucleotides between the 5" end of c7340.4 and the poly (A)
tail. Furthermore, no transcript is detected upstream of the
Pvull site by Northern analysis.

Several ¢cDNA sequences exhibit various polymor-
phisms. Most of them represent third-base changes and
do not alter the amino acid sequence. Two of them, how-
ever, result in an amino acid change, one at position 1342
changing an ala to a thr, the other at 1509 altering a phe
into an ile (Figure 1).

Molecular Lesion of the Mutant prd2.45-17

We have shown that the X-ray-induced prd mutant
prd245.17 (which was a kind gift from C. Niisslein-Volhard)
exhibited a 1.1 kb insertion into the prd gene. Northern
analysis revealed a prd transcript that was 1.1 kb longer
than the wild-type prd mRNA and hence suggested that
the insertion had occurred into an exon or into an intron
in such a way that its splicing became abnormal and pro-
duced a transcript that was 1.1 kb longer than the wild-
type prd mRNA (Kilchherr et al., 1986). We have se-
quenced part of a 1.5 kb genomic Smal fragment of
prd24517 which contained the entire 1.1 kb insertion (see
Figure 3 of Kilchherr et al., 1986). As illustrated in Figure
2, in prd24517  five base pairs of the second exon are
deleted between 1064 and 1070 and replaced with a 1.1
kb insertion of which the sequences at the two ends are
shown. The inserted DNA occurs well over a hundred
times in the entire genome and is scattered over all four
chromosomes (Kilchherr et al., 1986). As we have only se-
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exon 2 of wild type
10645 insertion in prd

..... CAGACAGCTACGTGTICTGCATCCGGATAACCGGTCGCTGT

2.45.17

CATGCAACAA... about 900 bp...TCCATGTGGTGGGATG

ﬁf]ll ﬂ?rl
TAATTTACTTAAGTATGGCGCCAAGGAGAGAGTCACGATGTGCGA

SnaBlI
GAACTCGTGTCCGAACTCCAAGGATAé@TAAACGGGAACTCAGCA

GGTGCAGCGCCTGCAATGTATCTGCGATGGAATGGCTCGCCAATC

exon 2 of wild type
insertion in prd2'45']§—JlO7O

CATCACTGGTAACAGTCAATACAATIATGGCTGCGTATCGA. . ...

Figure 2. DNA Sequence Surrounding the Site of Insertion into exon
2 in prg24517

In the mutant pra24577, five base pairs are deleted between position
1064 and 1070 of the wild-type sequence (Figure 1) and replaced with
a 1.1 kb insertion. The mutant DNA sequence surrounding the site of
insertion into exon 2 of the prd gene is shown.

quenced a small portion of the inserted DNA element, we
do not know whether it is a member of one of the charac-
terized middle repetitive sequence families (a restriction
map published by Kilchherr et al., 1986, has shown that
it contains four Pvull, three Pstl, and one Sall restriction
site). Nor could we detect in the sequenced portions of the
two ends any evidence for a direct or an inverted repeat.

Isolation of 11 Loci Containing DNA Sequences
Homologous to the 3’ End of
the prd Coding Region
We searched the Drosophila genome for sequences ho-
mologous to the prd transcript with two cDNA probes. One
cDNA, ¢73.2, corresponded to the 3' end of the prd mRNA
coding for the last 11 amino acids and the entire 3’ trailer
sequence; the other cDNA, ¢73.1, consisted of about 600
bp and coded for the last 205 amino acids of the long open
reading frame of 613 amino acids of prd, as indicated in
Figure 1 and Figure 3a. Both cDNAs were hybridized at
reduced stringency to whole-genome Southern blots of
two different D. melanogaster strains. While the 3’ trailer
cDNA did not hybridize any sequences other than those
originating from prd (not shown), the 600 bp cDNA re-
vealed five fairly strong and six faint bands (Figure 3b) in
addition to the 9.6 kb EcoRI fragment of prd. Since nearly
all these fragments were shorter than the 9.6 kb prd frag-
ment and showed up in both Drosophila strains, they
could not be due to partial EcoRI-digests nor was it likely
that they originated from polymorphisms in the prd gene
region. Therefore, they probably represented sequences
homologous to prd elsewhere in the genome.

To examine these prd-related loci more closely, a ge-
nomic EMBLA4 library was screened with the 600 bp prd

cDNA at reduced stringency of hybridization. To avoid
reisolation of the prd locus, duplicate filters of the library
were hybridized at normal stringency with probes flanking
the 9.6 kb EcoRI fragment of prd on either side. Rescreen-
ing showed that from 125 phages picked (PRD 1-PRD
125), about 5% still contained the prd gene. The remain-
ing phages could be divided into 11 groups from their
cross-hybridization patterns. These correspond to 11 dif-
ferent loci containing the sequences homologous to prd,
tentatively called PRD genes 1-11. EcoRl maps of these
loci, established by whole-genome Southern analysis
and, in some cases, by mapping of the phage DNAs con-
taining the cloned regions, are depicted in Figure 3c.

To determine which EcoRl fragment contained the se-
gquence homologous to prd, EcoRl fragments of represen-
tative phages of each of the 11 loci were resolved in an
agarose gel (Figure 4a), blotted to nitrocellulose, and hy-
bridized at reduced stringency with the 600 bp prd cDNA.
As evident from Figure 4b, the signal intensities of the 11
homologies exhibit considerable variation (about 15-fold)
but are all rather strong considering the short exposure
time used (Figure 4b). This implies either that the homolo-
gies are very good or that the homologous sequence
consists of a repetitive element. Upon hybridization to
polytene chromosomes, subclones containing the homol-
ogous sequences of the 11 cloned regions revealed only
one signal at the chromosomal bands indicated in Fig-
ure 3c.

Regions Containing Homologous Sequences

Are Transcribed during Early Development
Differential transcript mapping (Frei et al., 1985; Kilchherr
et al., 1986) was used to gain an idea of the temporal ex-
pression pattern of these genes during early develop-
ment. When blots from gels (Figure 4a) were hybridized
with 32P-labeled cDNA of poly(A)* RNA isolated from vari-
ous developmental stages (follicles; 0-4 hr-, 4-8 hr-, 8-12
hr-old embryos; and first instar larvae), it was found that
all except one region of the 11 loci produced transcripts
detectable in oocytes or embryos up to about the 8th—12th
hr of development at 25°C. No transcripts have been ob-
served by this method in PRD gene 2 and only very weak
transcription in the EcoRI fragments containing the ho-
mologous sequences of genes 5, 9, and 10 during early
development.

In order to assess the functional significance of the ob-
served homologies, we wanted to know first, whether they
coded for conserved amino acid sequences, second,
whether they were transcribed selectively during early de-
velopment, and third, whether their transcripts exhibited
a specific distribution in oocytes or young embryos. All of
these questions are discussed below in experiments that
examine PRD genes 3, 4, and 7 in greater detail.

Northern analysis using genomic subclones or the cor-
responding cDNA that contained the prd homology was
performed since differential transcript mapping does not
resolve different transcripts that are coded on the same
restriction fragment. The results confirmed that tran-
scripts of the PRD genes 3, 4, and 7 predominate before
8-12 hr of embryonic development (not shown).
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Figure 3. Isolation of Genomic Clones Containing Sequences Homologous to the 3" End of the prd Gene

(a) Restriction map of the prd gene indicating position of a 0.6 kb prd cDNA probe. The beginning and end of the longest open reading frame and
the positions of an intron and of the 0.6 kb prd ¢cDNA used as probe in (b) are indicated.

(b) Genomic Southern analysis at reduced stringency of hybridization with 0.6 kb prd cDNA. Genomic DNA (10 ug each) of two Drosophila strains
(1: 0dd'388 b pr cn sca | CyO; 2: b pr | b pr) was digested with EcoRl; the fragments were separated by electrophoresis in a 0.6% agarose gel in
TBE-buffer (Maniatis et al., 1982) and transferred bidirectionally to two nitrocelluiose filters (Smith and Summers, 1980), one of which was hybridized
at reduced stringency {McGinnis et al., 1984a) for two days with a 0.6 kb prd cDNA probe labeled by nick-translation (Rigby et al., 1977) with
a-32P-dATP (3000 Ci/mmole). Two autoradiograms after exposures for one day (left panel) and four hr {right panel) to reveal both weakly and
strongly hybridizing EcoRI fragments are shown. For size calibration, marker DNA fragments (H32) of known lengths (indicated in kb at the right)
are shown in the right lane of each panel.

(c) EcoRl restriction maps of 11 genomic regions containing sequences homologous to 0.6 kb prd cDNA. The sequences homologous to the
06 kb prd cDNA have been mapped to the regions represented by solid bars. The cytological locations of each cloned region on polytene chromo-
somes, indicated at the right, were determined by in situ hybridizations to salivary gland chromosomes of biotinylated probes according to Langer-
Safer et al. (1982). At the bottom, the prd gene region at 33C1 (Kilchherr et al., 1986) is shown. EcoRlI restriction maps of the 11 isolated regions
containing sequences homologous to the 0.6 kb prd cDNA were established from genomic clones and whole-genome Southern analysis with the
genomic clones.

A Gradient of PRD Gene 4 Transcripts

Particularly interesting was PRD gene 4, whose tran-
scripts had already appeared in oocytes. In situ hybridiza-
tion to tissue sections with a cDNA probe of PRD gene 4
revealed a striking distribution of transcripts (Figure 5). In
ovaries, transcripts are found in the nurse cells and ac-
cumulate at particularly high concentrations at the an-
terior end of the oocytes (Figures 5a and 5b). During
cleavage stages of the embryo, the concentration of tran-

scripts remains highest in the most anterior portion and
falls off in a concentration gradient along the antero-
posterior axis, reaching background behind the anterior
third of the embryo (Figures 5¢ and 5d). While transcripts
are reduced during syncytial blastoderm, they still pre-
dominate in the cortical cytoplasm (Figures 5e and 5f).
This phenomenon of transcript guidance to the cortical
cytoplasm has been observed for the zygotically ex-
pressed segmentation genes fushi tarazu (Hafen et al.,
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1984), hairy (Ingham et al., 1985), and prd (Kilchherr et al.,
1986). After formation of the cellular blastoderm, PRD
gene 4 RNA was not detected on tissue sections (not
shown).

DNA Homology Codes for a Protein Domain
Consisting of a Histidine-Proline Repeat

cDNAs of genes 4 (¢53.46.1) and 7 (¢c21.12.1) and a genom-
ic subclone of gene 3 (PRD 25), all containing the prd
homologies, were sequenced and compared to the se-
quence of the 600 bp prd cDNA. The aligned homologous
sequences resulting in a maximum correspondence are
shown in Figure 6. The homology consists, with minor de-
viations, of the hexanucleotide CALCCG repeated many
times over (PRD-repeat), which explains the strong sig-
nals of hybridization in Figure 4b. The reading frame of
PRD gene 4 was derived from cDNA sequences compris-
ing the longest open reading frame and was shown to be
in phase with that of prd as indicated in Figure 6. We se-
quenced only the homologous regions of genes 3 and 7
without determining their reading frames, assuming that
reading frames are used that result in amino acid se-
quences homologous to prd and gene 4 (Figure 6). The
results in Figure 6 show a conserved pattern of alternating
histidine and proline amino acids. This histidine-proline
repeat is imperfect and occasionally interrupted by the de-
letion of a histidine or proline or by replacement with an-
other amino acid. Allowing for such changes, the his—pro
repeats extend over 20 to 30 amino acids.

1.2 3 456 7 8 9 101

Figure 4. Association of PRD-Repeats with
M-Repeats and Homeo Boxes as Examined by
Phage Southerns

EcoRl digests of the following phage DNAs are
shown in lanes 1-11 (containing the PRD
genes 1-11); PRD 22, PRD 39, PRD 17, PRD 31,
PRD 54, PRD 24, PRD 21, PRD 68, PRD 76,
PRD 89, and PRD 108, after staining with
ethidium bromide (a), and after autoradiogra-
phy of Southern transfers hybridized at re-
- duced stringency with 0.6 kb prd cDNA (b), an
M-repeat probe (c), or an Antp- and Ubx-homeo
box probe (d). For size calibration, at the left
margin the lengths of a few DNA fragments are
indicated. DNA from one phage of each of the
11 cloned regions (0.66 pg) was digested with
EcoRl; the fragments were separated on a 06%
agarose gel, stained with ethidium bromide,
and trangferred to nitrocellulose filters. The
filters were hybridized for 17 hr at reduced strin-
gency with nick-translated DNA fragments
of the 06 kb prd cDNA, of the M-repeat
(Smal-Pvull fragment of p903 [McGinnis et al.,
1984ay]), or of the Antp- and Ubx-homeo boxes
(BamHI-Pvull fragment of p903 [McGinnis et
al., 1984a] and the Clal-Bgil fragment of p96
[McGinnis et al., 1984a]), as described for Fig-
ure 3b. The specific activity of all probes was
1-2 x 108 dpm/ug DNA, and hybridization oc-
curred at 108 dpm/ml. The filters were washed
in 2x SSC, 0.1% SDS for 15 min at room tem-
perature and for 30 min at 50°C, and autoradio-
graphed for 1 hr (b), 2 hr (c), or 15 hr (d). The
signal of the 0.6 kb prd-cDNA after hybridiza-
tion to its prd cognate DNA was nearly ten
times that of the strongest band in (b).

PRD-repeat

Antp,Ubx

Are PRD-Repeats Associated with Homeo Boxes

or M-Repeats?

For the reasons outlined in the introduction, a search was
initiated for the presence in the PRD-gene set of the
homeo box (McGinnis et al., 1984a; Scott and Weiner,
1984) and the M- (or opa-) repeat (McGinnis et al., 1984a;
Laughon et al., 1985; Wharton et al., 1985), the two other
domains known to be associated with genes active in de-
velopment (McGinnis et ai., 1984a; Scott and Weiner,
1984; Regulski et al., 1985; Kuroiwa et al., 1985; Laughon
et al., 1985; Wharton et al., 1985). Blots of the gel shown
in Figure 4a (‘phage Southerns”) were hybridized with
82P-labeled M-repeat (Figure 4c) or with Antp and Ubx
homeo box probes (Figure 4d). While five of the fragments
containing the PRD-repeat also hybridize with the M-re-
peat (see Figures 4b and 4c), only two fragments were de-
tected with the homeo box probe (Figure 4d). The pres-
ence of an M-repeat in PRD genes 3, 4, and 7 was further
confirmed by DNA sequencing (Figure 7). Thus at least
some of the PRD genes belong to the set of M-repeat
genes as well.

The strong homeo box signal in Figure 4d originated
from a 5.2 kb EcoRI fragment located next to the fragment
containing the PRD-repeat (compare Figures 4b and 4d
with the map in Figure 3c). To test whether both the homeo
box domain and the PRD-repeat were on the same tran-
script, cONAs were isolated with both the 5.2 kb and 8.7
kb EcoRI fragment of the region containing PRD gene 4
(Figure 3c). Analysis of the cDNAs, and Northern analysis
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prd-cDNA CAT CCC CAT 6Co CCG CAT CCG CAC GCA CAT CCG CAT CCG
€53.46 .1 CAT CAT CC6 CTG CEC CAC ACG CAC ACA CAT CCG CAT CCG
c21.12.1 CAC CC6 CATY cCo CCG CAC CCA ACG GCG CAT CCG CAC CAT CCG
PRD 25 CAT CCG CAC CAC CCG CAT CC& CAT (CG CAC CAG CAT CC6
His Pro His Pro Pro His Pro His His Pro His Pro
prd-cDNA CAT CCG CAC TAT CCG CCG CCC AGT TCG TCG GCG CAC TTC ATG
c53.46.1 CAT CCG CAC TC6 CAT CCG CAC CCA CAT CAC CAA CAT CCG CAG
c2i.12.1 GGA CCA CAG GAG CAG GAC AGC CAC AGG GTC AGG AGT TCT CAG
PRD 25 CAC CAT CC6 CAC CTG TIC CAC ACG AGC GAT CAG TTG CAG CAC TCG
His Pro His
Antp - 61n 61n Gln Gln Gln Gln G1n GIn Gln ... 4 a.a. ...
Gin Ala Pro Gin GIn Leu 61n G1n Gln ... 11 a.a. ...
PRD gene 3 - 6G1n Gln Gln .., 5 a,a. ... Gln Gin Gln ... 8 a.a. ...
PRD gene 4 ... GIn GIn GIn GlIn 4 a.a . 6In Gln GIn ... 10 a.a. ...
(bed) G1n GTn Gin Ala Gln Gln GIn Gln ...
PRD gene 7 Gln Gln Gln Gln GIn Gln Glu GIn ... 41 a.a. ...
51 a.a Gln GIn Gin GIn GIn GIn GIn Gln ...

with cDNA probes, showed that two different transcripts
are encoded on the two genomic fragments. Thus the 8.7
kb EcoRlI fragment gave rise to a 2.7 kb transcript corre-
sponding to the PRD gene 4 mRNA, while the 5.2 kb frag-
ment produced a 1.7 kb transcript that hybridized with the
homeo box. The weak homeo box signal in the region of
PRD gene 9 (Figure 4d) is not located on the same EcoRI
fragment as the PRD-repeat but rather separated from it
by at least 4.0 kb of a genomic EcoRI fragment (see Figure
3c). Since differential transcript mapping indicated that
this region is transcribed only at a very low level during
4-12 hr of embryonic development, no attempts were
made to clarify whether the PRD-repeat and the homeo
box are linked in one transcript. Hence, aithough at least
two PRD genes were located close to homeo box genes,
in no case was it possible by hybridization to show that a
PRD gene was a member of the homeo box gene set as
well.

PRD Gene 4 Is Located between zen and Dfd

In situ hybridization to salivary gland chromosomes of the
phage DNA containing PRD gene 4 revealed a signal at
84A. Hence, PRD gene 4 was probably located to the left
of Antp (Lewis et al., 1980). Comparison of the EcoRI map
of the region containing gene 4 (Figure 3c) with that of the
Antp complex at 84A showed that it was identical to that
of aregion between 20 and 50 kb to the left of Dfd that had
been cloned previously (Scott et al., 1983). Judging from
the genetic map (Scott et al., 1983; Wakimoto et al., 1984),
the gene containing the homeo box could be zerkniilit
(zen). This assumption is supported by a recent report
correlating the temporal and spatial patterns of transcripts
originating from the fragment containing the homeo box

CAG
CAC

CAC

His

cTT
ATA

CAG

GIn Gln G1ln Gln Gln Ala Gln

GIn GlIn GIn Gln G1n Gln ...

Gln Gln GIn ...

Gin Met GIn Gln GIn

Gln Gln 61n GIn Gln Gln Gln Gln

GCA GGC GCA

Figure 6. Homologous DNA Sequences of the
PRD Gene Set

The DNA sequences of PRD gene 4 (¢53.46.1),
PRD gene 7 (c21.12.1), and PRD gene 3 (PRD
25) that are homologous to the 0.6 kb prd cDNA
are compared with the corresponding se-
quence of the prd gene (prd-cDNA). Below the
DNA sequences, His and Pro are indicated at
positions where they correspond to the most
frequent amino acid. The reading frames have
been determined as indicated in the text. Note
that the His-Pro repeat of ¢53.46.1 is longer
than in the three other genes.

CAT CCG

CAT CCC GGT

AAT GCC

Pro

CAG AAC TTC AAT

CAG TTG CCG

TGC TGC AGA TGT

CAG CAG ACC GTC

Figure 7. M-Repeats of PRD Genes 3,4, and 7

The clusters of oligo-GiIn (M-repeat) in the prod-
ucts of PRD genes 3, 4, and 7 are shown. The
amino acid sequences were derived from the
corresponding DNA sequences. For PRD gene
3, only part of its genomic sequence has been
determined, hence it is possible that its M-re-
peat is longer than indicated here. For com-
parison, the M-repeat, first discovered in the
Antp gene (McGinnis et al., 1984a), is shown
(Schneuwly et al., 1986).

(Doyle et al., 1986) with the gastrulation-defective pheno-
type of zen (Wakimoto et al., 1984). PRD gene 4, however,
is not identical with zen because zen is only expressed zy-
gotically (Wakimoto et al., 1984). A much more likely can-
didate for gene 4 is bicoid (bcd), which has been char-
acterized and mapped to this region (Frohnhéfer and
Nilsslein-Volhard, 1986). The phenotype of bed exhibits a
maternal effect and shows abnormai head development
(Frohnhéfer and Nisslein-Volhard, 1986), which is also in
agreement with the temporal and spatial distribution of
PRD gene 4 transcripts (Figure 5).

prd and PRD Gene 4 Each Contain

a PRD-Repeat and a Homeo Box

When the DNA sequences coding for full-length tran-
scripts of prd (Figure 1) and PRD gene 4 were compared,
another region of homology that differed from the PRD-
repeat was discovered. Closer inspection of size (180 bp)
and sequence revealed two new types of homeo boxes
(Figure 8). As already mentioned, the extent of homology
with Antp-, Ubx-like homeo boxes (Scott and Weiner, 1984;
McGinnis et al., 1984b; Regulski et al., 1985; Kuroiwa et
al., 1985; Laughon et al., 1985) is insufficient (42%-50%)
for detection by low stringency hybridization (Figure 4d).
Neither would we expect the prd and PRD gene 4 homeo
boxes to hybridize with the other known class of homeo
boxes, en (Poole et al., 1985; Fjose et al., 1985), because
of an equally low degree of DNA homology (46%-50%).
Moreover, the DNA homology between the prd and PRD
gene 4 homeo boxes is not very close (48%), hence nei-
ther would be detected by hybridization with the other in
a routine library screen, yet hybridization between the two
is detectable in the more sensitive assay of a phage
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Southern (not shown). In the more meaningful compari-
son of the conservation of the amino acid sequence (Fig-
ure 9), we find homologies of 37% between the prd and
Antp, 42% between the PRD gene 4 and Antp, and 38%
between the prd and PRD gene 4 homeo boxes. it is ap-
parent from Figure 9 that the prd and PRD gene 4 ho-
meo boxes have undergone nonconservative amino acid
changes at many positions that are strongly conserved in
all Antp-, Ubx-like homeo boxes. Conversely, about an
equal number of positions (17) appear to be strictly
conserved or to tolerate only conservative amino acid
changes in all presently known homeo boxes of Drosoph-
ila (Figure 9). Most importantly, the results depicted in Fig-
ure 9 further support our hypothesis that members of the
PRD gene set belong to other sets of genes, particularly
to the set of homeo box genes. We note that unlike the en-
type (Poole et al., 1985; Fjose et al., 1985), the two new
types of homeo boxes are each contained in a single exon.

It is interesting to discuss the prd and PRD gene 4
homeo boxes in terms of the helix-turn-helix model pro-
posed for DNA-binding proteins (Anderson et al., 1981;
McKay and Steitz, 1981; Pabo and Lewis, 1982; Matthews
et al., 1982; Sauer et al., 1982; Weber et al., 1982; Pabo
and Sauer, 1984). The model is based on crystallographic,
genetic, and biochemical analyses of the interaction of the
ALDNA-binding proteins ¢/ and cro, and of the E. coli
catabolite-activating protein with their operator DNAs (re-
viewed in Pabo and Sauer, 1984). It proposes that the
two a-helices linked by a tight turn specifically bind to
DNA sequences. The second a-helix provides the binding
specificity by recognizing the bases in the major groove
and is held in position by the first a-helix interacting with
the DNA backbone. The model has been applied to a se-
quence of 20 amino acids within the homeo domain sug-
gested to form a helix-turn-helix structure as indicated in
Figure 9 (Laughon and Scott, 1984; Laughon et al., 1985).
A comparison of the corresponding regions of the prd and
PRD gene 4 homeo domains with the salient features of
the helix-turn-helix model shows that several amino acids

GCC
CT6
CGA

GAC

€16
CTG

CTA

CAC
T66

ATC

-1 Figure 8. DNA Sequences of the prd, bed,
AR Antp, and en Homeo Boxes

The DNA sequences (5'-3') from the homeo box
regions of the prd and bed (PRD gene 4) genes
are compared to those of the Antp (Kuroiwa et
al., 1985) and en genes (Poole et al., 1985). The
position of an intron in the en homeo box (Poole
et al., 1985; Fjose et al., 1985) is indicated by
atriangle. The DNA sequence of the bed gene
has been determined from nearly full-length
¢DNAs as well as from the genomic sequence.

TT6 AAG C6C

GTG ATG CGG CGA

AGT CAG TTT GAA

AAG  ACC AAC GAC

60

GAA CGC GCC TTC

GAG CAG CAC TTT

GAG AAG GAG TTT

raeYoes GaG TIC

CGC ACC AAT

AMA CTA GCC

GCC CTG TGC

GAG GGC  CTG

180

CGC  AAG CAC

ARG ATC Tca

AAG  AAG AAC

AAG  AAG ACG

of the second a-helix at positions responsible for DNA-
binding specificity differ from those in Antp-, Ubx-like
homeo domains {Figure 9). Thus the lys-ile amino acid
pair, which is conserved in all other homeo domains, is
changed to gin-val in prd, and PRD gene 4 carries a thr
where normally glu is found. In addition, both prd and
PRD gene 4 have an ala in common with en and inv at a
position of helix 2 where all other homeo domains exhibit
an arg. Hence, it appears that the prd and PRD gene 4
proteins might bind to different DNA sequences that are
not recognized by the other homeo domains or that the
two proteins exhibit altered affinities for the same DNA se-
quence. In contrast to these differences, the prd and PRD
gene 4 proteins are conserved at positions thought to be
important for the overall geometry of the domain compris-
ing the two a-helices. The only exception represents the
ser at position 5 of the first helix of PRD gene 4 where nor-
mally an ala resides that interacts with the ile or val at posi-
tion 4 of helix 2 (Pabo and Sauer, 1984). The same devia-
tion has been noted for the en- and inv-domains (Laughon
et al., 1985).

Whole-genome Southern analysis with the prd and
PRD gene 4 homeo boxes as probes uncovered at least
one DNA sequence with a good homology to each homeo
box elsewhere in the genome. Isolation of these se-
quences and preliminary sequence analysis indicate that
the prd and PRD gene 4 homeo boxes are highly con-
served at other genomic loci. Thus the prd and PRD gene
4 homeo boxes belong to two new classes of homeo
boxes. Most interestingly, one of the regions homologous
to the PRD gene 4 homeo box is located on PRD gene 6.
Hence, at least three genes belong to the PRD-repeat as
well as to the homeo box gene set.

Discussion
Here we describe a new set of genes defined by a con-

served putative (his—pro), domain, the PRD gene set. We
are proposing two hypotheses. First, the PRD gene set is
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Figure 9. Amino Acid Sequences of Drosophila Homeo Boxes Inter-
preted in the HelixTurn-Helix Model

The amino acid sequences of the prd and PRD gene 4 (bcd) homeo
boxes are compared to those of Antp, Scr, Ubx, ftz (all from Kuroiwa
etal., 1985; Laughon et al., 1985), Dfd (Regulski et al., 1985; Laughon
etal., 1985), iab-7 (Regulski et al., 1985), cad (Mlodzik et al., 1985), en
(Poole et al., 1985; Fjose et al., 1985), and inv (Poole et al., 1985). At
position 17 of the Dfd homeo box, Asp instead of Glu has been reported
by Laughon et al. (1985), and at position 33 of the en homeo box, Glu
instead of GIn by Fjose et al. (1985). Positions at which the amino acid
has been strictly conserved (A) or where only conservative changes
are observed (£.) are marked. Nonconservative amino acid changes
at positions that are highly conserved in Antp-, Ubx-like homeo boxes
are boxed. The positions of the turn and the two a-helices in the helix-
turn-helix model (Pabo and Sauer, 1984; Laughon and Scott, 1984;
Laughon et al., 1985) are indicated below amino acids 31 to 50. In this
region the homeo box sequences are compared to those of the A
repressor proteins Ac/ and Acro (Hsiang et al., 1977; Roberts et al.,
1977; Sauer and Anderegg, 1978; Pabo and Sauer, 1984; Laughon and
Scott, 1984). Positions in these proteins known to interact with the DNA
backbone (+) or with the bases in the major groove (*), or positions
occupied by conserved Ala, lle/Val, or hydrophobic amino acids (H)
thought to be important for the overall geometry of the two o-helices,
are indicated (Pabo and Sauer, 1984). The triangle between the en and
inv sequence marks the position of an intron in these two related genes
(Poole et al., 1985; Fjose et al., 1985).

one of many gene sets, each defined by its cognate do-
main (for example, the homeo domain or M-repeat). Sec-
ond, all of these gene sets are linked through genes con-
taining more than one of these domains. That this might
be a general principle was suggested, though not recog-
nized, by the presence of homeo boxes in genes of the
M-repeat set (McGinnis et al., 1984a; Regulski et al., 1985;
Kuroiwa et al., 1985; Laughon et al., 1985). To test this pro-
posal, we searched the recently isolated prd gene (Kilch-
herr et al., 1986) for domains occurring elsewhere in the
genome. We found a group of 11 additional genes linked
by the PRD-repeat. Three of those that showed a peak of
activity before germ band retraction were characterized in
greater detaii.

The heuristic value of this concept is illustrated by
the fact that this approach has led so far to the isolation
of one known developmental gene (bicoid) as well as to
the discovery of two new types of homeo boxes that could
only be recognized by sequencing. More recent work has
shown that the prd gene contains, in addition to the PRD-
repeat and the homeo box, a further domain extending
over a length of 128 amino acids (positions 931-1314 in
Figure 1) that enlarges the network to four interconnected
sets (Bopp et al., 1986). We may thus extend the network
by jumping from one set to the next as long as new do-
mains are discovered.

In contrast to most previously analyzed genes in which
the homeo box is located near the carboxy-terminal
(McGinnis et al., 1984a, 1984b; Scott and Weiner, 1984;
Reguiski et al., 1985; Kuroiwa et al., 1985; Poole et al.,
1985), the newly found homeo boxes are either near the
amino terminal (PRD gene 4) or in the middle of the pro-
tein (prd, Figure 1). The same variability of position is
found in the case of PRD- and M-repeats (Reguilski et al.,
1985; Laughon et al., 1985; our unpublished results). This
is what would be expected if domains assort indepen-
dently during evolution. Independent assortment of do-
mains rather than evolutionary drift might also account for
the high variability of the regions flanking a domain. This
explanation is in better accord with the slow accumulation
of single base changes estimated by Ohno (1985).

In apparent contradiction to independent assortment, it
is striking that a relatively large fraction of the PRD do-
mains are either linked to or in close proximity to homeo
domains. At least two explanations come to mind. Biologi-
cal factors favor the association of homeo boxes and PRD-
repeats either within the same gene or in neighboring
genes. Combination of a homeo and PRD domain within
the same gene might be explained if an originally random
association proved functionally advantageous and hence
stabilized their linkage during evolution. Occurrence of
PRD and homeo domains in neighboring genes, on the
other hand, is expected if homeo and PRD domains occur
preferentially in developmental genes that frequently have
been found to be clustered (e.g., genes in the bithorax or
Antennapedia complex). Because the number of such
clustered genes might be relatively large and the number
of different domains present in these genes might be
small, a nonexclusive second possibility is that there exist
many more copies of homeo or PRD domains that have
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Figure 10. Sequencing Strategy of the prd Gene

A restriction map of the region containing the prd gene (genomic DNA)
and the location of the 3’ end and of the intron boundaries of the prd
transcript (cDNA) are shown. The precise position of its 5’ end has not
been determined. Below, the regions covered by several isolated
cDNAs are indicated (Kilchherr et al., 1986). The portion of the cDNA
¢7340.4 shown as a broken line has not been sequenced. Position,
length, and orientation (DNA strand) of the sequenced regions are rep-
resented by corresponding arrows at the top (genomic sequences) and
bottom (cDNA sequences). A small part of the genomic sequence in
the 0.9 kb BamHI fragment has not been determined. Its equivalence
with the corresponding cDNA sequence is assumed from their com-
parison by restriction analysis, which revealed no intron.

yet to be discovered. It is improbable that many more PRD
genes will be discovered because the sensitivity of hybrid-
ization with repeat structures is intrinsically high. In con-
trast, homeo boxes easily escape detection, as shown
here for the prd gene and PRD gene 4.

Networks are a general form of organization used to
integrate complex functions (Kauffman, 1971). Although
the recognition of their existence in biology may not have
provided insights of immediate predictive value, their char-
acterization and study are nevertheless important. Pres-
ent methods of finding functional links between genes that
are forming an integrated system are tedious and the
results difficult to interpret (e.g., modification of expres-
sion patterns of one gene by another as studied by in situ
hybridization to tissue sections). A more efficient ap-
proach to elucidating functional networks may be the sys-
tematic method of expleiting structural links by jumping
from one gene set to another, as we have proposed. Is it
a valid assumption that we preferentially find genes that
belong to an integrated system? In favor of this hypothesis
are the following observations and arguments. First,
homeo boxes are associated with genes functioning in de-
velopment (McGinnis et al., 1984a; Scott and Weiner,
1984; Regulski et al., 1985; Kuroiwa et al., 1985; Laughon
etal., 1985; Poole et al., 1985; Fjose et al., 1985). Second,
PRD genes are either known to be important in early de-
terminative events (bcd: Frohnhéfer and Niisslein-Vol-
hard, 1986; pra) or are suspected of having a developmen-
tal function on the basis of their temporal expression
pattern. Third, some genes are found to possess both the
homeo and PRD domain.

Our structural analysis suggests that genes are linked

in networks of functional significance. The functional im-
portance of such networks has been discussed in a
general theory of the behavior of gene regulation net-
works by Kauffman (1971) and in the special case of the
immune system by Jerne (1974). If our structural approach
to discovering gene networks is general, it must be ap-
plicable to genes of other integrated systems (nervous
system, cytoskeleton, metabolic pathways, cell—cell rec-
ognition, immune system, DNA replication, and so on). All
these systems must be in turn interconnected within a net-
work of a still higher order to make up the phenotype of
an organism.

Experimental Procedures

Isolation of cDNA Clones

A cDNA-library of poly (A)* RNA from 0-4 hr-old embryos was pre-
pared in Agt10, and nearly full-length cDNAs of prd, PRD gene 4
(c53.46.1 and ¢53.46.6), and PRD gene 7 (c21.12.1) were isolated ac-
cording to standard procedures (Maniatis et al., 1982). The 0.6 kb prd
cDNA was isolated from a cDNA-library kindly provided by Tom Korn-
berg and prepared from poly (A)* RNA of 0-3 hr-old embryos.

Isolation of Genomic DNA Clones with Sequences

Homologous to prd

Genomic clones were isolated from an odd'3 b pr cn sca I CyO li-
brary in EMBL4 (Frischauf et al., 1983) by hybridizing Benton-Davis
transfers (Benton and Davis, 1977) of the library with the radioactively
labeled (Rigby et al., 1977) 0.6 kb prd cDNA probe at reduced strin-
gency (McGinnis et al., 1984a). Subclones of the isolated regions were
prepared according to standard procedures (Maniatis et al., 1982).

DNA Sequencing

The isolation of genomic and cDNA clones of the prd gene has been
described (Kilchherr et al., 1986). Figure 10 shows a restriction map
of the prd gene (see Figure 3 of Kilchherr et al., 1986) and indicates
the region covered by several cDNAs that have been isolated by
screening a Agt10 library containing DNA complementary to poly (A)*
RNA from 0-4 hr-old (c7340.1, c7340.4, c7340.6) or 0-3 hr-old (c73.1,
¢73.2) Drosophila embryos. As evident from the sequencing strategy
itlustrated in Figure 10, many regions of both the genomic and various
cDNAs were sequenced in several clones, and all regions were se-
quenced on both strands. Only one strand of the 5’ ends of the two
cDNA clones, ¢7340.4 and ¢7340.6, was sequenced, whereas the cor-
responding genomic DNA was sequenced on both strands. Con-
versely, the 0.9 kb region between two BamHI sites was sequenced on
both strands of several cDNAs, yet only on one strand or not at all on
the genomic DNA. This omission was permitted because comparison
of the genomic and cDNA by restriction analysis within this region
demcnstrated no intron.

All other DNA sequences were analyzed on both strands, reading
each sequence at least twice on independent clones. The DNAs were
sequenced in the M13 vector mMWB3296 by the dideoxynucleotide se-
quencing procedure of Sanger et al. (1977). The mWB3296 vector was
constructed from mWB2344 (Barnes et al., 1983) by replacing the Clal
fragment with that of M13mp8 and thus eliminating the BamHI site at
2220. In a second step, the polylinker was replaced by the M13mp18
polylinker.
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