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Figure 2. Improved Co-expression analysis. STRING v10 features a completely re-designed pipeline for accessing and processing gene expression infor-
mation. Left: overview of the individual steps; note that redundant expression experiments are now detected and pruned automatically. Right: improved
benchmark performance of the resulting co-expression links, relative to the previous version of STRING, in four model organisms (ROC curves). The
benchmark is based on the KEGG pathway maps; predicted interactions are considered to be true positives when both interacting proteins are annotated
to the same KEGG map.

encompassed importing and processing all primary data
sources again, re-running all prediction algorithms and re-
executing the entire text-mining pipeline with new dictio-
naries and extended text collections. Many of the features
and interfaces of STRING have already been described pre-
viously (26–28). Below, we have given a short overview of
the resource and describe recent additions and modifica-
tions.

User interface

The main entry point into the STRING website is the
protein search box on its start page. It supports queries
for multiple proteins, can be restricted to certain organ-
isms or clades of organisms, and uses a weighted scheme
to rank annotation text matches and identifier matches.
Users can also arrive via a number of external websites (29–
32) that maintain cross-links with STRING, including the
partner resources Search Tool for Interactions of Chem-
icals (STITCH; 33) and eggNOG (34)––the latter both
share protein sequences, annotations and name-spaces with
STRING. A third way to enter STRING is via logging on to
the My Data section; this allows users to upload gene-lists,
create identifier mappings, view their browsing history and
provide additional ‘payload’ data to be displayed alongside
the interactions.

Once a protein or set of proteins is identified, users pro-
ceed to the network view (Figure 1). From there, it is pos-
sible to inspect the interaction evidence, to re-adjust the
score-cutoffs and network size limits and to view detailed
information about the interacting proteins. Upon switch-
ing to the ‘advanced’ mode (via the tool panel below the
network), users can also cluster and rearrange the network
and test for statistical enrichments in the network. The lat-
ter feature has been enhanced for the current version 10.0
of STRING: enrichment detection now also covers human
disease associations and tissue annotations, which might
be statistically enriched in a given network. For this fea-
ture, STRING connects with the partner databases TIS-
SUES (http://tissues.jensenlab.org) and DISEASES (http:
//diseases.jensenlab.org), which also share sequence and
name spaces with STRING, and which annotate proteins
to tissues or to disease entities based on a combination of
automated text-mining and knowledge imports.

Interaction transfer between organisms

Since version 6.0 of STRING, a significant source of inter-
actions for any given organism has been the transfer of in-
teraction knowledge from orthologous proteins observed to
be interacting in another organism. Since version 9.1, these
so-called ‘interolog’ transfers were based on pre-computed
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Figure 3. Access to STRING from R/Bioconductor. Left: example session describing how to initialize a human protein network from the STRING
database backend, and how to map a set of gene names against it. A subset of the proteins is then plotted as a STRING network (right), complete with
auxiliary numerical payload-information highlighting some nodes of interest (red color halos).

orthology relations imported from the eggNOG database
(34). Orthologs in eggNOG are provided in a hierarchical
and nested fashion, allowing the transfer of interactions by
traversing up and down along the hierarchy of clades in the
tree of life (26). For this purpose, the nested orthology as-
signments should ideally be fully self-consistent: proteins
assigned to an orthologous group for a given phylogenetic
clade should be grouped together in all higher-level clades
too. In past versions of the orthologous groups, this has
not always been the case for technical reasons (orthology
assignments are computed independently for each clade).
However, for STRING v10, a post-processing pipeline has
been devised that makes the orthology setup fully self-
consistent. It implements consistency by iteratively splitting
and merging orthologous groups at the various clades and
levels, until a fully consistent state is achieved. As of now,
this post-processed set of orthologs forms the basis for all
interaction-transfers in STRING v10. In future releases, the
same hierarchical and consistent set of protein families and
orthologs will be used also for more intuitive navigation and
search features on the user interface.

Co-expression analysis

It has long been established that co-expression is a proxy
for co-regulation (35,36) and a strong indicator of func-
tional associations. The co-expression scores in STRING
v10 are computed using a revised and improved pipeline
(Figure 2), making use of all microarray gene expression
experiments deposited in NCBI Gene Expression Omnibus
(NCBI GEO) (37). As of March 2014, GEO consisted of

more than 12 000 different platforms (GPL), 45 000 experi-
ments (GSE) and over 1 million matrices (GSM). By includ-
ing the large amount of diverse arrays in the analysis we can
decrease the bias of individual platforms and experiments,
and reduce the impact of non-informative matrices. Prior to
the analysis, 22 organisms were identified as providing suf-
ficient data (at least 50 experiments each). The first step of
the pipeline maps probe identifiers from each platform file
(GPL) to STRING genes, using dictionaries from the text-
mining pipeline. Samples with less than 100 map-able genes
and experiments with less than three samples are excluded
from further analysis. The microarray expression values (ex-
tracted from the GSE files) are then normalized (z-value
normalization) and values for each probe merged into sin-
gle vectors (separately for single-channel and dual-channel
arrays). Additionally, single-channel array values are log2-
transformed and their mean is subtracted, to make them
compatible with fold-change values in the two-channel case.
Expression values of genes measured by more than one
probe are averaged. In order to remove the redundancy
and to increase information density between the arrays, the
gene expression vectors are correlated with one another (us-
ing Spearman’s rank correlation) and the full set of arrays
is pruned using the Hobohm-2 algorithm (38) with sim-
ilarity thresholds of 0.7 and 0.95, for single-channel and
dual-channel arrays, respectively. The new gene expression
values are then correlated gene-by-gene (Pearson correla-
tion) and the resulting values are calibrated against com-
mon membership in KEGG pathway maps (release 2014-
07-21) in order to compute STRING scores. Lastly, the
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scores from single- and dual-channel arrays are combined in
a probabilistic manner to get the final scores. KEGG bench-
mark performance clearly improves relative to STRING
v9.1 (Figure 2). The improvements can be attributed to the
increased size of the GEO repository (experiments added
since 2011) and to changes in our pipeline, namely: (i) the
additional step to prune highly correlated samples using the
Hobohm-2 algorithm and (ii) several minor improvements
and bug fixes.

R/Bioconductor access

Apart from directly browsing and searching the website,
data access in STRING is possible also via a REST-based
API (application programing interface) and via wholesale
data download. With version 10.0, we have introduced
a further option: direct access from the R programming
environment, following the Bioconductor standard (39).
The corresponding package is named STRINGdb (Fig-
ure 3), and can be downloaded from the Bioconductor
repository (http://www.bioconductor.org/packages/release/
bioc/html/STRINGdb.html). The package interacts with
the STRING server via the REST API and via additional,
dedicated web services. To optimize the speed of subsequent
accesses, the entire interaction network and associated data
for a given organism are downloaded from the server and
cached locally in the R environment, whenever possible. The
package is built around the iGraph framework (40), which
handles the complexity of the network data structures and
provides fast query/analysis functions. Once a network is
loaded/cached into an iGraph object, high-level functions
facilitate the most common user tasks, such as mapping pro-
tein names onto their corresponding STRING identifiers,
retrieving the neighbors of a protein of interest, retrieving
PubMed IDs for publications that support a given interac-
tion, finding clusters of proteins in the network and gener-
ating stable links back to the STRING website.

The plot network function can be used to display a native
STRING network of proteins in R (Figure 3). Functions
are also available to augment a given network with user-
provided node colorings (‘payload information’, see also
Figure 1), such that subsets of proteins can be tagged and
visually highlighted. Statistical enrichment tests can be ex-
ecuted on gene lists within the STRING namespace, cov-
ering Gene Ontology and pathway annotations, as well as
tissue and diseases annotations. Results can be visualized
as lists of enriched terms and/or heatmaps. The R-package
proves particularly valuable for users arriving with a very
large set of genes, for which the web-based interface of
STRING has previously been a major bottleneck.
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