Mutations in \textit{ARMC9}, which encodes a basal body protein, cause Joubert syndrome in humans and ciliopathy phenotypes in zebrafish

Van De Weghe Julie C,1,2 Rusterholz Tamara DS,1,3 Latour Brooke,1,4,5 Grout Megan E,2 Aldinger Kimberly A,2,6 Shaheen Ranad,7 Dempsey Jennifer C,2 Maddirevula Sateesh,7 Cheng Yong-Han H,2 Phelps Ian G,2 Gesemann Matthias,3 Goel Himanshu,8,9 Birk Ohad S,10 Alanzi Talal,7 Rawashdeh Rifaat,7 Khan Arif O,7,11 University of Washington Center for Mendelian Genomics, Bamshad Michael J,2,12 Nickerson Deborah A,12 Neuhauss Stephan CF,3 Dobyns William,2,6,13 Alkuraya Fowzan S,14,15 Roepman Ronald,1,4,5 Bachmann-Gagescu Ruxandra,*1,3,16 Doherty Dan*1,2,6

Affiliations
1) Equal authorship
2) Department of Pediatrics, University of Washington, Seattle, WA, 98195 USA
3) Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
4) Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
5) Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
6) Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101 USA
7) Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia
8) Hunter Genetics, Waratah, NSW 2298, Australia
9) University of Newcastle, Callaghan, NSW 2308, Australia
10) Genetics Institute, Soroka Medical Center and National Institute for Biotechnology in the Negev (NIBN), Ben Gurion University, Beer Sheva, 8499000 Israel 653
11) Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
12) Department of Genome Sciences, University of Washington, Seattle, WA, 98195 USA
13) Department of Neurology, University of Washington, Seattle, WA, 98195 USA
14) Department of Anatomy and Cell Biology, College of Medicine, Alfaasal University, Riyadh 11533, Saudi Arabia
15) Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12371, Saudi Arabia
16) Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland

*corresponding

Correspondence Emails: Dan Doherty ddoher@uw.edu
Ruxandra Bachmann-Gagescu ruxandra.bachmann@imls.uzh.ch
ABSTRACT

Joubert syndrome (JS) is a recessive, neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements and variable cognitive impairment. It is defined by a distinctive brain malformation recognized as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease and liver fibrosis. More than 35 genes have been associated with JS, but the genetic cause remains unknown in a subset of families. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement, to JS with retinal dystrophy, additional brain abnormalities (e.g. heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.
INTRODUCTION

Joubert syndrome (JS OMIM: P213330) is a recessive neurodevelopmental disorder characterized by motor and cognitive impairments and a distinctive hindbrain malformation giving the appearance of the "molar tooth sign" (MTS) on axial MRI. In addition to the obligate neurological features, subsets of individuals with JS have progressive retinal dystrophy, fibrocystic kidney disease and liver fibrosis, as well as malformations such as chorioretinal coloboma and polydactyly. Despite this distinctive clinical presentation, mutations in more than 35 genes cause JS, highlighting its marked genetic heterogeneity. All of the genes to date encode proteins that function in or around the primary cilium, rendering JS a canonical ciliopathy; ciliopathies are disorders grouped by their overlapping clinical features and molecular disease mechanisms involving cilium dysfunction. The primary cilium is a nearly ubiquitous microtubule-based organelle sheathed in a specialized membrane that projects from the cellular surface and functions like an antenna, detecting light, mechanical, and chemical cues, as well as regulating key signaling pathways such as Hedgehog and PDGF. Significant advances have been made in recent years on the complex genetics underlying JS, and multiple cellular and developmental defects have been associated with loss of function for JS-associated genes in model systems. Despite this remarkable progress identifying candidate mechanisms, the common cellular dysfunction across genetic causes of JS is elusive. Therefore it is essential to identify the complete set of genetic defects that underlie JS to pinpoint the unifying molecular mechanism. In this work, we present evidence for mutations in armadillo repeat containing 9 (ARMC9) as a cause of JS, based on human genetic, protein localization, and zebrafish model data.

MATERIALS AND METHODS

Subject ascertainment and phenotypic data

Informed consent was obtained for all participants under approved human subjects research protocols at the University of Washington (UW), Seattle Children’s Hospital, or King Faisal Specialist Hospital and Research Centre (KFSHRC). All participants have clinical findings of JS (intellectual impairment, hypotonia, ataxia and/or oculomotor apraxia) and diagnostic or supportive brain imaging findings (MTS or cerebellar vermis hypoplasia). Clinical data were obtained by direct examination of participants, review of medical records and structured questionnaires.
Variant identification

Samples from individuals affected by JS were previously screened using a Molecular Inversion Probes (MIPs) targeted capture46 for \textit{AHI1} [OMIM: 608894], \textit{ARL13B} [OMIM: 608922], \textit{B9D1} [OMIM: 614144], \textit{B9D2} [OMIM: 611951], \textit{C2CD3} [OMIM: 615944], \textit{C5ORF42} [OMIM: 614571], \textit{CC2D2A} [OMIM: 612013], \textit{CEP290} [OMIM: 61042], \textit{CEP41} [OMIM: 610523], \textit{CSPP1} [OMIM: 611654], \textit{IFT172} [OMIM: 607386], \textit{INPP5E} [OMIM: 613037], \textit{KIF7} [OMIM: 611254], \textit{MKS1} [OMIM: 609883], \textit{NPHP1} [OMIM: 607100], \textit{OFD1} [OMIM: 300170], \textit{RPGRIP1L} [OMIM: 610937], \textit{TCTN1} [OMIM: 609863], \textit{TCTN2} [OMIM: 613846], \textit{TCTN3} [OMIM: 613847], \textit{TMEM138} [OMIM: 614459], \textit{TMEM216} [OMIM: 613277], \textit{TMEM231} [OMIM: 614949], \textit{TMEM237} [OMIM: 614423], \textit{TMEM67} [OMIM: 609884], \textit{TTC21B} [OMIM: 612014] and \textit{ZNF423} [OMIM: 604557].1-24,47 In samples without causal variants, exome sequencing was performed as previously described48 using Roche Nimblegen SeqCap EZ Human Exome Library v2.0 capture probes (36.5 Mb of coding exons) and paired-end 50 base pair reads on an Illumina HiSeq sequencer. In accordance with the Genome Analysis ToolKit’s (GATK) best practices, we mapped sequence reads to the human reference genome (hg19) using the Burrows-Wheeler Aligner (v.0.6.2), removed duplicate reads (PicardMarkDuplicates v1.70), and performed indel realignment (GATK IndelRealigner v.1.6) and base-quality recalibration (GATK TableRecalibration v1.6). We called variants using the GATK UnifiedGenotyper and flagged with VariantFiltration to mark potential false positives that did not pass the following filters: Heterozygous Allele Balance (ABHet) > 0.75, Quality by Depth > 5.0, Quality (QUAL) _ 50.0, Homopolymer Run (Hrun) < 4.0, and low depth (<6x). We used SeattleSeq for variant annotation and the Combined Annotation Dependent Depletion (CADD) score to determine deleteriousness of identified missense variants.49 Based on CADD score data for causal variants in other JS-associated genes, we used a CADD score cutoff of 15 to define deleterious variants.47

LR09-023 was ascertained as part of a larger study of genetic causes for Dandy-Walker malformation (DWM). Exome sequencing of this individual and his parents was performed by Beckman Coulter genomics as follows: genomic DNA isolated from peripheral blood was captured using the Agilent SureSelect V5 enrichment kit and sequenced on an Illumina HiSeq 2000 as 150-bp paired-end runs. Reads were aligned with BWA; variants were called with GATK and freebayes. Variants called by both GATK and freebayes were annotated using
Gemini, including data sets from the ExAc Exome, NHLBI 6500 Exome, and 1000 Genomes projects for variant frequencies, and amino-acid-change functional predictions from CADD scores. Variants were filtered for de novo, recessive (compound heterozygous or homozygous), or X-linked inheritance, <0.001 frequency in public databases, predicted to be deleterious by CADD >10, and expressed in human fetal (BrainSpan) or adult (GTex) cerebellum.

For the two families in the Saudi Arabian cohort, DNA from the affected individuals, as well as their unaffected siblings and parents, were genotyped using the Axiom SNP Chip platform to determine the candidate autozygome. The previously described “Mendeliome” targeted sequencing assay was then performed on DNA from affected members to search for likely causal variants in the known JS genes followed by whole exome sequencing in samples without causal variants. WES was performed using TruSeq Exome Enrichment kit (Illumina) following the manufacturer’s protocol. Samples were prepared as an Illumina sequencing library, and in the second step, the sequencing libraries were enriched for the desired target using the Illumina Exome Enrichment protocol. The captured libraries were sequenced using an Illumina HiSeq 2000 Sequencer. The reads were mapped against UCSC hg19 by BWA. SNPs and Indels were detected by SAMTOOLS. Homozygous rare, predicted-deleterious, coding/splicing variants within the autozygome of the affected individual were considered as likely causal. We defined rare variants as those with frequency of <0.1% in publicly available variant databases (1000 Genomes, Exome Variant Server and gnomAD), as well as a database of 2,379 in-house ethnically-matched exomes, and deleterious if predicted to be pathogenic by PolyPhen, SIFT and CADD (score >15).

Array CGH
To assess copy number variation, we performed array comparative genomic hybridization using a custom 8x60K oligonucleotide array (Agilent Technologies, Santa Clara, CA) targeting AHI1, ARL13B, ARMC9, B9D1, B9D2, C2CD3, C5orf42, CBY1 [OMIM: 607757], CC2D2A, CEP104 [OMIM: 616690], CEP120 [OMIM: 613446], CEP290, CEP41 [OMIM: 610523], CEP83 [OMIM:615847], CSPP1, DDX59 [OMIM: 615464], EXOC8 [OMIM: 615283], HYLS1 [OMIM:610693], IFT172, INPP5E, KCTD10 [OMIM: 613421], KIAA0556 [OMIM: 616650], KIAA0586 [OMIM: 610178], KIAA0753 [OMIM: 617112], KIF7, MKS1, NPHP1, NPHP3 [OMIM:
608002], NPHP4 [OMIM: 607215], ODF1, PDE6D, PIBF1 [OMIM: 607532], POC1B [OMIM: 614784],
RPGRIPL1, TBC1D32 [OMIM: 615867], TCTN1, TCTN2, TCTN3, TMEM107 [OMIM:616183], TMEM138,
TMEM17 [OMIM: 614950], TMEM216, TMEM218, TMEM231, TMEM237, TMEM67, TTC21B, ZNF423. Probe
spacing was a median of 11bp in the exons, and a median of 315bp throughout the intronic regions and 100kb
on either side of each gene: Data were generated on an Agilent Technologies DNA Microarray Scanner with
Surescan High-Resolution Technology using Agilent Scan Control software, and were processed and analyzed
using Agilent Feature Extraction and Agilent Cytogenomics software.

RNA isolation and quantitative PCR
We cultured human fibroblasts from healthy controls in DMEM + 10 % fetal bovine serum (FBS) and 1%
penicillin/streptomycin under standard conditions. To induce ciliogenesis, we cultured in DMEM without
FBS once the cells reached ~70% confluency. After treatment with 0.05% trypsin, cycling cells and serum-
starved cells were harvested and RNA extracted using the Aurum Total RNA Mini Kit (Bio-rad, Hercules, CA).
We generated cDNA from 2µg of total RNA using the iScript Reverse Transcription Supermix for RT-qPCR
(Biorad, Hercules, CA). The expression of ARL13B and ARMC9 mRNAs was determined using qPCR. Each
cDNA sample was amplified using Power SYBR Green PCR Master Mix (Applied Biosystems, Thermo Fisher
Scientific) on the C1000 Thermal Cycler CFX (Bio-rad, Hercules, CA). After an initial denaturation of 10
minutes at 95°C, each cycle (x39) consisted of denaturation at 95°C for 15 seconds and anneal/extend at 60°C
for one minute with a plate read. The primers for ARL13B and ARMC9 are listed in Table S1. GAPDH was
used as an endogenous control to normalize each sample. The experiment was performed in triplicate.

Cell lines, antibodies and microscopy
Human telomerase-immortalized retinal pigment epithelium (hTERT-RPE1) cells were grown in DMEM
(PAA) supplemented with F12 in a 1:1 ratio with 10% fetal bovine serum and 1% penicillin/streptomycin.
Cells were plated on glass cover slips for immunofluorescence imaging. Twenty-four hours after plating,
cells were serum starved for 48 h in 0.2% FBS medium to induce cell cycle arrest and ciliogenesis. Cells
were rinsed once with 1 x PBS at room temperature and then fixed in 2% paraformaldehyde for 20 min and
permeabilized with 1% Triton-X for 5 min. Cells were blocked in freshly prepared 2% bovine serum albumin
for 45 minutes and then incubated with the following antibodies for 1 hour: rabbit anti-ARMC9 (Atlas Antibodies, HPA019041; 1:200), guinea pig anti-RPGRIP1L (SNC040, 1:300), and a monoclonal anti-acetylated tubulin (clone 6-11-B1, Sigma-Aldrich, T6793; 1:1000) and goat anti-γ-tubulin (Santa Cruz Biotechnology, sc-7396, 1:250). Anti-ARMC9 recognizes an epitope at the N-terminal portion of the protein. Cells were stained with secondary antibodies for 45 min. The following secondary antibodies were used (all from Life Technologies/Thermo Fisher Scientific, Bleiswijk, The Netherlands; all diluted 1:500 in 2% BSA): anti-guinea pig IgG Alexa Fluor 647, anti-rabbit IgG Alexa Fluor 488, anti-goat IgG Alexa Fluor 647, and anti-mouse IgG Alexa Fluor 568. DAPI (4’,6-diamidino-2-phenylindole) stained the nucleus. Confocal imaging was done with the Zeiss LSM 880 Laser scanning microscope equipped with Airyscan technology.

Antibody validation with siRNA knock down

Reverse transfections on hTERT-RPE1 cells were performed with pre-designed Silencer Select siRNA to ARMC9 (Ambion from Life Technologies), as well as a positive control to knock down GAPDH (Ambion from Life Technologies) and a scrambled non-targeting negative control (Ambion from Life Technologies). Lyophilised siRNAs were re-constituted with RNase-free water (Thermo Scientific) to a final working concentration of 50 nM. Lipofectamine RNAiMax (LifeTechnologies) and Opti-MEM (LifeTechnologies) were used for siRNA transfection and done in accordance with the manufacturer's protocol. Cells were harvested and lysed with RIPA lysis buffer supplemented with Complete Protease Inhibitor Cocktail Tablets (Roche) 72 hours post transfection and western blotting was performed. Primary antibodies mouse monoclonal GAPDH (Thermo Scientific) and rabbit polyclonal ARMC9 (Human Protein Atlas Sigma Aldrich) were used at 1:1000 and 1:500 dilutions respectively and incubated overnight at 4 degrees. Secondary antibodies goat anti-rabbit IRDye800 (LI-COR Biosciences) and goat anti-mouse IRDye680 (LI-COR Biosciences) were used at a dilution of 1:10,000 and incubated with blots for 1 hour at room temperature. Imaging was done with the Odyssey CLx imaging system (LI-COR Biosciences). Protein quantification was performed using Image Studio Lite software (LI-COR Biosciences).

Zebrafish in situs, CRISPR, mutation assay, histology
Zebrafish were maintained at 28°C with a 14 h/10 h light/dark cycle as previously described. All zebrafish protocols were in compliance with internationally recognized guidelines for the use of zebrafish in biomedical research, and the experiments were approved by local authorities (Veterinäramt Zürich TV4206).

In situ hybridization was performed following standard protocols with a probe spanning over 800 bp at the 3' end of armc9 generated using the primers 5'-AGCTCAACTCAGCGACCATC-3' and 3'-TGCTGTTACAGCTGGA-5'. sgRNAs for CRISPR/Cas9 mutagenesis were designed using the CHOPCHOP website: 3'-GGGATTGGGCACAAATGGCA-5' and 3'-GGAACAGCTCCTGAAAGGAC-5' for exon 4 and 5'-GGTCAAAGAGCTGAATGACT-3' and 3'-GGAGCTCCGTCAGGACTTTTC-5' for exon 14/15. Pairs of sgRNAs for each target site were mixed with Cas9 protein (gift from Darren Gilmour) and injected into 1-cell stage embryos obtained through natural matings. Individual larvae were lysed for assessment of mutagenesis efficiency. Amplification of the target regions for genotyping was performed using primer pairs 5’-CAGCCAAACCCTGAGTTCC-3’ and 3’-TGACCCTGTAGTGTGCTG-5’ for exon 4 and 5’-CACGCCTTGAGCTGAC-3’ and 3’-CAGCGCTTGGTGGAGCAAT-5’ for exons 14/15. The PCR products were analyzed on gel electrophoresis, bands were cut out and subcloned before sequencing. The remaining F0 fish were raised. Brains of four F0 fish with curved bodies were dissected out at five months of age, halved and fixed in 2.5% Glutaraldehyde in 0.1M Cacodylate buffer and prepared for scanning electron microscopy (SEM) following standard protocols. SEM was performed on a ZEISS Supra VP 50 microscope. Cryosections were performed following standard protocols and IHC was performed as previously described, using the zpr1 antibody. Vybrant® DiO (ThermoFisherScientific) and DAPI were used for counterstaining. Images were acquired on a Leica HCS LSI confocal microscope. Histological sections using Technovit were performed as previously described. Images were acquired on an Olympus BX61 microscope.

RESULTS

Exome sequencing reveals ARMC9 mutations as a cause for JS

To identify novel genetic causes of JS, we performed whole exome sequencing on a cohort of 53 individuals (51 families) with a clinical diagnosis of JS enrolled in the University of Washington (UW) Joubert Syndrome Research Program. Inclusion criteria comprised the presence of clinical findings of JS
(developmental delays, hypotonia, ataxia, and/or oculomotor apraxia), diagnostic brain imaging findings, and lack of mutations in 28 JS-associated genes (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, CC2D2A, ARL13B, INPP5E, OFD1, TMEM216, CEP41, TMEM237, TCTN2, KIF7, TCTN1, TMEM138, MKS1, C5ORF42, TMEM231, TCTN3, CSPP1, PDE6D, IFT172, ZNF423, TTC21B, B9D1, B9D2, and C2CD3) based on targeted sequencing. Variants from the exome sequencing data that were rare (minor allele frequency <1% in the exome variant server [EVS] database) and predicted to be deleterious (stop-gain, frameshift, canonical splice variants and variants with CADD score >15) were retained for further analysis.

We identified pairs of siblings in two families that shared two rare, predicted-deleterious variants (RDVs) in ARMC9 (NM_025139.4): UW132-3 and -4 carry c.205G>A, p.Gly69Arg and c.1336C>T, Arg446Cys, while UW335-3 and -4 carry c.259C>T, p.Arg87* and c.1027C>A, p.Arg343Cys (Table 1 and Figure 1).

We then performed targeted sequencing of ARMC9 using the Molecular Inversion Probe (MIPs) capture method followed by next generation sequencing on samples from 534 individuals in 456 families with and without known causes. Three additional individuals in three families have ARMC9 RDVs: UW348-3 has a homozygous c.51+5G>T, predicted splice variant, UW349-3 has two RDVs (predicted splice c.1474+1G>C and missense c.1027C>T, p.Arg343Cys), while UW116-3 has a single heterozygous c.1027C>T, p.Arg343Cys. Based on decreased sequence coverage for two consecutive MIPs covering exon 14 in UW116-3, we suspected a deletion in UW116-3. We performed comparative genomic hybridization using a custom array targeting the JS genes, and identified a 2.5kb deletion encompassing exon 14 in UW116-3 (Figure 1B-D). Exon 14 is 124 basepairs long, so its loss is predicted to result in a frameshift and truncation of the protein, or nonsense mediated decay of the transcript.

In parallel, exome sequencing in two other cohorts identified biallelic RDVs in ARMC9: three individuals (SA1-3, SA2-3 and -4) from two families in a cohort of 47 Saudi Arabian families affected by JS had homozygous ARMC9 missense RDVs (c.1027C>T, p.Arg343Cys and c.1559C>T, p.Pro520Leu), and a single individual with JS (LR09-023) from a mixed cohort of 100 individuals with Dandy-Walker malformation and cerebellar hypoplasia had compound heterozygous ARMC9 RDVs (c.1474G>A, p.Gly492Arg and c.1027C>T, p.Arg343Cys). In total, we identified 10 different ARMC9 RDVs (1 stop-gain, 2 splice, 6 missense, and 1 single exon deletion) in 11 individuals from 8 families. All variants were validated by Sanger sequencing, and for seven individuals from five families their segregation with the disease was confirmed in parents and siblings;
segregation was not performed in the remaining four families because DNA was not available from parents (Table 1). c.1027C>T, p.Arg343Cys appears to be a recurrent mutation rather than a founder variant, since it is present in families of diverse ethnicities, and a second variant (c.1027C>A, p.Arg343Ser) affects the same position. ARMC9 is predicted to have a Lissencephaly type-1-like homology (LisH) motif, a coiled-coil domain, and armadillo repeats (Figure 1A). Two of the missense RDVs are in the armadillo repeats, while the other four missense RDVs are not located in known domains.

ARMC9-related JS is indistinguishable from JS due to other genetic causes

All of the affected individuals have typical features of JS including hypotonia and developmental disability, most severely affecting motor and speech function (Table 1). Ages range from 2 to 33 years. Most of the individuals have isolated neurodevelopmental issues, including two with seizures (UW132-3 and UW116-3). Two individuals (UW132-4 and SA2-3) have postaxial polydactyly, while SA2-3 also has syndactyly. Two individuals (UW348-3 and SA2-3) also have retinal dystrophy, but none have kidney or liver involvement. UW349-3 has a more complex presentation with hypopituitarism, bilateral optic nerve hypoplasia, bifid uvula, and an abnormal brainstem (see below).

Based on direct review of the brain MRIs, all of the affected individuals have the “molar tooth sign,” as well as dysplasia of the superior cerebellar folia (Figure 2A-B, F and Table S2). Three individuals (UW335-4, LR09-023, and SA2-3) have cerebellar hemisphere dysplasia, seen in up to 1/3 of individuals with JS (Figure 2C). In addition to the MTS, LR09-023 has a large posterior fossa with a rotated cerebellar vermis consistent with Dandy-Walker malformation, (Figure 2D-E, I). LR09-023 also has a single periventricular heterotopia (Figure 2D), as do UW116-3 and UW335-4. The two oldest individuals (UW132-3 and -4) have an atrophic appearance to their cerebellum, more severely affecting the vermis than the hemispheres (Figure 2G). UW349-3 has a kinked brainstem and cervicomedullary junction heterotopia (Figure 2H) seen in a small subset of individuals with JS, and UW349-3 and SA2-3 have an absent posterior pituitary bright spot, but only UW349-3 has known pituitary insufficiency.

ARMC9 localizes to the basal bodies of primary cilia
JS-associated proteins have been shown to localize in and around primary cilia;40, 45, 72-74 therefore, we used a commercially available ARMC9 antibody to evaluate endogenous ARMC9 localization in ciliated hTERT-RPE1 cells. ARMC9 co-localized with γ-tubulin at the base of cilia (Figure 3A). To get enhanced details of ARMC9 localization, we turned to superresolution imaging. ARMC9 localized to the ciliary basal body (Figure 3B, white arrowhead), basal to but not overlapping with the transition zone marker RPGRIP1L, as well as to the daughter centriole (Figure 3B, white arrow) marked by acetylated α-tubulin antibody (Figure 3B).

ARMC9 expression is upregulated in ciliated cells

Based on data from model systems and humans, many genes involved in cilium function are upregulated in ciliated cells.75-79 We evaluated ARMC9 expression by quantitative PCR in control human fibroblasts with and without serum in the medium. In the presence of serum, fibroblasts actively divide and few have cilia, but in response to serum starvation, 80-90\% drop out of the cell cycle and make cilia, similar to other published results.80 ARMC9 expression was 1.9- to 3.6-fold higher in serum-starved cells than cells grown with serum (Figure 3C). For comparison, expression of another JS-associated gene, ARL13B, was 2.4-fold higher in serum-starved cells.

Zebrafish armc9 mutants display typical ciliopathy phenotypes

To investigate the function of ARMC9 in vivo, we turned to the zebrafish model. Zebrafish have a single ARMC9 orthologue that has 58\% identity and 72\% similarity with the human protein. Based on database predictions and manual curation, both the LisH domain and the armadillo-fold domain are conserved in zebrafish at similar positions to the human protein (amino acids 7-39 and 375-600 respectively) (Supp Figure 1). In adult zebrafish, armc9 is expressed in multiple CNS regions based on in situ hybridization, including the cerebellum (Supp Figure 1), all periventricular regions (Figure 4A) and all layers of the retina (Figure 4B). To explore whether loss of armc9 function results in ciliopathy phenotypes, we engineered frameshift mutations in zebrafish using CRISPR/Cas9 (Supp Figure 2). Co-injecting pairs of small guide RNAs targeting either exon 4 or exons 14-15 (the latter corresponding to the middle of the armadillo-fold domain), we generated mutations with very high efficiency (91\% of sequenced clones from individual F0 larvae carried indels, the majority of which were out-of-frame; Supp Figure 2). Of approximately 140 surviving F0 fish raised, 10 developed a
curved body axis around six weeks of age (Figure 4C-D), including both exon 4 and exon 14-15 targeted animals. The body curvature phenotype correlated well with the presence of indels affecting the targeted exons; genotyping of 49 F0 fish by gel electrophoresis demonstrated various armc9 indels in 11 fish, only one of which did not have a curved body shape. Moreover, such body curvature was never observed in hundreds of raised F0 fish injected with sgRNA targeting non-ciliary genes (20 different sgRNAs). A recent study suggested body curvature in zebrafish is caused by deficient ependymal cilia-generated cerebrospinal fluid (CSF) flow.81 Indeed, using SEM we observed a substantial reduction of cilia numbers on the ventricular surface of adult zebrafish harboring armc9 mutations (Figure 4E-F). In addition, a subset of F0 fish with body curvature also displayed a retinal coloboma and had shortened photoreceptor outer segments, typical phenotypes observed with ciliary dysfunction (Figure 4G-J and Supp Figure 2).38 Taken together, these results confirm that armc9 loss-of-function in zebrafish causes typical ciliopathy phenotypes and strongly support a role for armc9 in ciliary function.

DISCUSSION

Mutations in more than 35 genes have been identified in individuals with JS, explaining the genetic cause in 62\% to 97\% of cases, depending on the study.47, 66, 82 In addition to these known causes, we now identify ARMC9 mutations as an additional cause of JS accounting for almost 1\% of families in our cohort of >500. Substantial functional evidence supports ARMC9 as a ciliopathy-associated gene.

ARMC9 localizes to the basal body

We provide evidence that ARMC9 localizes to the ciliary basal body, similar to other JS-associated proteins (Figure 3A-B). The basal body originates from the mother centriole that docks at the cell membrane during interphase to nucleate the ciliary axoneme. The daughter centriole remains tethered to the basal body by an interconnecting fiber, and both structures often appear as juxtaposed puncta on immunofluorescence images. Basal bodies are composed of nine short triplet microtubules arranged in a circle, and two of the three microtubules in each basal body triplet extend as axonemal microtubules. Several other JS-associated proteins, OFD1, KIAA0586, and C2CD3, also localize to the basal body.40, 45, 72-74, 83 Strikingly, ARMC9 and OFD1 both have an N-terminal LisH motif that is known to bind to microtubules (Figure 1A).72, 84, 85 Two
published proteomic studies in murine inner medullary collecting duct (IMCD3) cells also provide support for ARMC9 as a cilium-associated protein: 1) ARMC9 was detected a total of 31 times across ciliary fractions via MudPIT mass spectrometry of isolated cilia; 2) Proximity labeling using a promiscuous biotinylating enzyme conjugated to the transition zone protein NPHP3 detected ARMC9-specific peptides (6 spectral counts), thus providing direct evidence for their adjacency.

ARMC9 is present in ciliated organisms and upregulated in ciliated cells

The use of comparative genomics to compile genes exclusively present in ciliated organisms versus non-ciliated organisms is a common technique in identifying ciliary genes. ARMC9 homologs are present in ciliated eukaryotes from humans to unicellular flagellates such as *Trochaic trifallax*, but absent in plants, fungi, bacteria, viruses, and Archaea. Expression of the ARMC9 *C. elegans* homolog, F59G1.4, is restricted to sensory neurons, the only ciliated cells in this organism. Ciliary gene induction was first linked to ciliogenesis in classical experiments in unicellular flagellates, notably *Chlamydomonas*, a model system particularly well-suited to study ciliary biology. These experiments demonstrated that new protein synthesis was required for full cilia regeneration via use of protein synthesis inhibitors or enucleating cells. Later experiments show that ciliary genes are widely induced during ciliogenesis and maintained at high levels in ciliated cells. Ciliary genes are similarly upregulated in higher organisms. Similar to other ciliary genes, we demonstrate that ARMC9 expression is upregulated in human ciliated fibroblasts, as compared to cycling cells (Figure 3C).

Zebrafish harboring armc9 mutations display typical ciliopathy phenotypes

In a vertebrate model, zebrafish harboring CRISPR-engineered armc9 mutations display phenotypes similar to those seen with loss-of-function for zebrafish orthologs of other ciliopathy-associated genes (Figure 4). The retinal dystrophy and/or curved body axis are also seen in loss-of-function models for the *cc2d2a, ahi1*, and *ift* genes. Furthermore, we show a strong reduction of cilia in the brain ventricles of zebrafish harboring armc9 mutations, suggesting the gene product may participate in early stages of ciliogenesis or be required for ciliary maintenance. The mosaic state of the animals analyzed in this work does not allow for discrimination between these two possibilities. Indeed, the presence of residual cilia on some
ventricular cells may be explained by lack of armc9 mutations in those cells, or incomplete penetrance of the phenotype. Future analysis of stable lines will help address these possibilities. The identical phenotypes observed in multiple animals generated using guides targeting different armc9 regions, combined with lack of these phenotypes with CRISPR/Cas9-generated deletions in 20 different non-ciliary genes, strongly support the specificity of the observed phenotypes and argue against non-specific or off-target effects of CRISPR/Cas9.

In conclusion, we demonstrate that mutations in ARMC9 cause JS and show that ARMC9 localizes to the basal body. Given the LisH domain, ARMC9 likely binds microtubules there, but the details of its function remain to be elucidated. Delineating all of the genes involved in JS will enable future work to determine how proteins that localize to the basal body, transition zone, cilium proper, and cilium tip all contribute to the molecular mechanism(s) underlying JS. Understanding the molecular mechanisms of JS will lead to more specific treatments in the future and further our understanding of basic ciliary biology in health and disease.
Acknowledgements

We deeply thank the families who participated in this study. We also thank the Joubert syndrome and Related Disorder Foundation for referring families, Heather Mefford and her laboratory for help with arrays, the Center for Microscopy and Image Analysis, University of Zurich (ZMB), for their assistance with Scanning Electron Microscopy, in particular Gery Barmettler, the Genotyping and Sequencing Core Facilities at King Faisal Specialist Hospital & Research Centre for their technical help, Darren Gilmour for the Cas9 protein. This work was supported by the following: NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development U54HD083091 (Genetics Core and Sub-project 6849) to DD, NIH National Institute of Neurological Diseases and Stroke (R01NS064077 to DD, and R01NS050375 to WBD), private donations from families to DD, the Swiss National Science foundation (PZ00P3_163979) to RB-G, the Netherlands Organization for Scientific Research (NWO Vici-865.12.005) to RR, the King Salman Center for Disability Research to FSA, Dandy-Walker Alliance to WBD, and NIH National Human Genome Research Institute (U54HG006493) to MB and DN.

Web Resources

SeattleSeq, http://snp.gs.washington.edu/SeattleSeqAnnotation137/
Combined Annotation Dependent Depletion (CADD) score, http://cadd.gs.washington.edu/
UCSC hg19, http://genome.ucsc.edu/
SAMTOOLS, http://samtools.sourceforge.net/
CHOPCHOP website http://chopchop.cbu.uib.no/
Online Mendelian Inheritance in Man, https://www.omim.org/
Figure 1. **ARMC9 mutations cause JS:** (A) The ARMC9 gene encodes a protein with an N-terminal LisH domain (green square), a coiled coil domain (yellow polygon), and a series of armadillo repeats (blue oval). Patient mutations are indicated by red arrows. (B-D) Confirmation of ARMC9 exon 14 deletion in UW116-3. No difference in the size or number of PCR products is observed between cDNA isolated from UW116-3 and two unaffected control cell lines using primers in exons 9 and 14 (C-D). Primers in exons 13 and 17 amplify a full-
length product and a shorter product (bracket) in UW116-3, but only the full-length product in the two control lines. Sequencing genomic DNA amplified by primers flanking exon 14 reveals a 2516bp deletion with a 22bp insertion (D).
Figure 2. Brain imaging findings in individuals with ARMC9-related Joubert syndrome. (A-C) MTS (A), inferior cerebellar dysplasia (white arrows in B), and superior cerebellar dysplasia (white arrow in C) in SA2-3. (D-E) MTS (D), posterior fossa cyst (asterisks in D-E), and ventriculomegaly (plus signs in E) in LR09-023. Note the single periventricular nodular heterotopia (black arrowhead in D). (F) Vermis hypoplasia and elevated roof of the 4th ventricle in SA2-3 (white arrow). (G) Cerebellar vermis hypoplasia and atrophy in UW132-3 (white arrow). (H) Kinked brainstem and cervicomедullary heterotopia in UW349-3 (white arrowhead). (I) Enlarged posterior fossa fluid collection (white asterisk) and rotated vermis (white arrowhead) in LR09-032. (A-E) are axial T2-weighted images; (F-I) are sagittal T1-weighted images.
Figure 3. ARMC9 localization and ARMC9 expression in ciliated and proliferating cells

(A) ARMC9 (green) co-localizes with γ-tubulin (white) at the basal body of the primary cilium in serum-starved hTERT RPE1 cells via standard fluorescence microscopy. Anti-acetylated α-tubulin (red) marks the ciliary axoneme. DAPI (blue) stains the nuclei. (B) Superresolution imaging reveals ARMC9 (green) localizes at the basal body (white arrowhead) and at the daughter centriole (white arrow) of the primary cilium in serum-starved hTERT RPE1 cells. The ciliary marker anti-RPGRIP1L (white), marks the ciliary transition zone and anti-acetylated α-tubulin (red) marks the ciliary axoneme. DAPI (blue) stains the nuclei. (C) ARMC9 expression in control human fibroblasts grown with serum (proliferating cells) and without serum (ciliated cells), assessed
using qPCR with *GAPDH* as a reference gene. *ARL13B* is used a positive control for a gene upregulated in ciliated cells.
Figure 4: *armc9* loss-of-function in zebrafish leads to typical ciliopathy phenotypes

(A-B) Expression of *armc9* in zebrafish adult brain (A) and retina (B) by *in situ* hybridization. Note the expression along ventricular surfaces in (A) and in all retinal layers, including the photoreceptor (PR) and the inner nuclear layer (INL) in (B-B'). (C-D) Adult zebrafish harboring *armc9* mutations display a curved body shape (D) compared to wild-type controls (C). (E-F) Scanning electron microscopy image of the ventricular
surface demonstrates bundles of cilia in wild-type (E) but substantial reduction of cilia numbers in F0 armc9 fish (F). (G-H) Histological sections through adult zebrafish eyes of wild-type (G) and F0 armc9 mutants (H) showing a coloboma (arrow). (I-J) Higher magnification images show the different retinal layers in wild-type fish (I) including the PRs and their long outer segments (OS, bracket) which represent highly specialized ciliary compartments. (J) Note the shortened OS in F0 armc9 mutants (bracket). Scale bars are 200 µm in (A-B), 50 µm in (B’), 5 mm in (C-D), 3 µm in (E-F), 250 µm in (G-H) and 50 µm in (I-J). ν ventricle, PGZ periventricular grey zone of optic tectum, Hv ventral zone of periventricular hypothalamus, PR photoreceptors, INL inner nuclear layer.
<table>
<thead>
<tr>
<th>ID#</th>
<th>UW132-3</th>
<th>UW132-4</th>
<th>UW348-3</th>
<th>UW116-3</th>
<th>UW335-3</th>
<th>UW335-4</th>
<th>UW349-3</th>
<th>LR09-023</th>
<th>SA1-3</th>
<th>SA2-3</th>
<th>SA2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>ARMC9</td>
</tr>
<tr>
<td>MAF</td>
<td>0.000025 (7/277212)</td>
<td>0.000025 (7/277212)</td>
<td>ND</td>
<td>ND</td>
<td>0.000018 (5/277214)</td>
<td>0.000018 (5/277214)</td>
<td>ND</td>
<td>ND</td>
<td>0.000053 (13/246244)</td>
<td>0.0000041 (1/246192)</td>
<td>0.0000041 (1/246192)</td>
</tr>
<tr>
<td>CADD v1.3</td>
<td>33</td>
<td>33</td>
<td>14.54</td>
<td>N/A</td>
<td>35</td>
<td>35</td>
<td>23.5</td>
<td>26</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>AF</td>
<td>0.0000041 (1/246076)</td>
<td>0.0000041 (1/246076)</td>
<td>ND</td>
<td>ND</td>
<td>0.0000053 (13/246244)</td>
<td>0.0000041 (1/246244)</td>
<td>0.0000041 (1/246244)</td>
<td>0.0000053 (13/246244)</td>
<td>0.0000041 (1/246192)</td>
<td>0.0000041 (1/246192)</td>
<td></td>
</tr>
<tr>
<td>CADD v1.3</td>
<td>34</td>
<td>34</td>
<td>14.54</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Ethnicity/ country</td>
<td>white/ US</td>
<td>white/ US</td>
<td>white/ Israel</td>
<td>white/ US</td>
<td>white/ Australia</td>
<td>white/ Australia</td>
<td>white/ US</td>
<td>>1 race/ US</td>
<td>Arab/ Saudi</td>
<td>Arab/ Saudi</td>
<td>Arab/ Saudi</td>
</tr>
<tr>
<td>gender</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>age (years)</td>
<td>33</td>
<td>29</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Dev Disability</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>apnea/tachyp</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>both</td>
<td>both</td>
<td>N</td>
<td>A</td>
<td>T</td>
<td>Y*</td>
<td>N</td>
<td>Y*</td>
</tr>
<tr>
<td>abnl eye mvts</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>unk</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>retinal dystrophy</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>unk</td>
<td>unk</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>kidney</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>unk</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>liver</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>unk</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>polydactyly</td>
<td>N</td>
<td>Y</td>
<td>unk</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>coloboma</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>unk</td>
<td>unk</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ptosis</td>
<td>N</td>
<td>Y</td>
<td>unk</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>seizures</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>Hysterectomy 2016 (heavy bleeding); worsening visual acuity; seizures</td>
<td>Lithium induced hypothyroidism L foot postaxial polydactyly</td>
<td>Abnormal ERG</td>
<td>G-tube</td>
<td>-</td>
<td>single heterotopia (left occipital horn)</td>
<td>Micrognathia; high palate; bifid uvula; bilateral optic nerve hypoplasia, GH deficiency; microphthalmia; eyelid implants; possible hearing loss; borderline HSM</td>
<td>Dandy Walker malformation; Ventriculo- and cysto-peritoneal shunts; non-ambulatory; non- verbal at age 8 yr</td>
<td>-</td>
<td>Broad nasal bridge, thin upper lip, Y-shaped 2/3 toe syndactyly</td>
<td>-</td>
</tr>
</tbody>
</table>

A=apnea, AF=Allele Frequency based on gnomAD, F=female, GH=Growth Hormone, HSM=heptosplenomegaly, ID=Identification, M=male, N=No, ND=not documented, T=tachypnea, unk=unknown, Y=Yes; *=transient neonatal
REFERENCES

