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A mobile robot employing insect strategies for navigation
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Abstract

The ability to navigate in a complex environment is crucial for both animals and robots. Many animals use a combination
of different strategies to return to significant locations in their environment. For example, the desert antCataglyphisis able
to explore its desert habitat for hundreds of meters while foraging and return back to its nest precisely and on a straight line.
The three main strategies thatCataglyphisis using to accomplish this task arepath integration, visual pilotingandsystematic
search. In this study, we use a synthetic methodology to gain additional insights into the navigation behavior ofCataglyphis.
Inspired by the insect’s navigation system we have developed mechanisms for path integration and visual piloting that were
successfully employed on the mobile robotSahabot 2. On the one hand, the results obtained from these experiments provide
support for the underlying biological models. On the other hand, by taking the parsimonious navigation strategies of insects
as a guideline, computationally cheap navigation methods for mobile robots are derived from the insights gained in the
experiments. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years the idea of “learning from nature” is
rapidly spreading through a number of scientific com-
munities: computer science (artificial intelligence, ar-
tificial evolution, artificial life), engineering (bionics),
and robotics (biorobotics). The main goal is to exploit
the impressive results achieved by the blind but potent
designer “Evolution”. Among the most awesome ca-
pabilities exhibited by natural systems are the naviga-
tional skills of insects. Despite their diminutive brains,
many insects accomplish impressive navigation tasks.
Desert antsCataglyphis, for example, make foraging
excursions that take them up to 200 m away from their
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nest. On finding a suitable prey, they return home un-
failingly and in a straight line [47] (see Fig. 1).

Cataglyphiscannot use pheromones to retrace its
trail in order to return back to its nest, since the
pheromones evaporate in a few seconds because of
the high ground temperatures. More than two decades
of field work (for a review see [50]) have revealed
many details about the behavioral repertoire and the
underlying mechanisms thatCataglyphis employs
when homing. The three main strategies used arepath
integration, visual piloting, and systematic search
[52]. Whereas path integration based on compass
information gained from the polarization pattern of
the sky is the primary navigation strategy of the ants,
geocentered information based on landmarks is also
used in order to finally pinpoint the nest.

Although there is a large number of behavioral
data about the navigation behavior ofCataglyphis,
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Fig. 1. A typical foraging trip of the Saharan antCataglyphis(inset). Starting at the nest (open circle), the ant searches for food on a
random course (thin line) until it finds a prey (position marked with the large filled circle). The food is carried back to the nest on an
almost straight course (thick line). Adapted from [56].

and some mechanisms of peripheral signal processing
have been unraveled, it is still largely unknown how
the navigation system is implemented in the insect’s
brain. In this paper we use theautonomous agents
approach (see e.g. [37]) to gain additional insights
into the navigation behavior of insects. The goal of
this approach is to develop an understanding of nat-
ural systems by building a robot that mimics some
aspects of their sensory and nervous system and their
behavior.

This “synthetic” methodology has a number of ad-
vantages. Computer simulations of models are a first
step of synthetic modeling. While it is often the case
that models of biological agents are only described
verbally or outlined implicitly, computer simulations
require an explicit, algorithmic model, which helps
to avoid pitfalls in terms of unwarranted assumptions
or glossing over details. Especially the behavior of

feedback systems is difficult to predict without sim-
ulations, and moving agents receive a rich and com-
plex feedback on their actions from the environment.
However, the value of computer simulations is lim-
ited by the fact that properties of the environment are
usually difficult to reproduce in simulations. Wrong
assumptions about these properties may severely
misguide the development of models. The necessary
step from a simulation to the real world is done by
constructing artificial agents (mobile robots) and ex-
posing them to the same environment that also the
biological agents experience. Moreover, in contrast
to animal experiments, the observed behavior of an
artificial agent can be linked to its sensory inputs and
its internal state. The advantages of proceeding in this
way are illustrated in our recent studies, in which an
autonomous agent navigated using directional infor-
mation from skylight [29]. A similar line of research
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is also pursued by other groups. Autonomous agents
have, for example, been used to study the visuomotor
system of the housefly [17], visual odometry in bees
[9,38,39], cricket phonotaxis [31,41–45], six-legged
locomotion of insects [14,15], and lobster chemotaxis
[13,21].

In this study, (1) we give a brief overview of a
polarized-light compass, and how it was employed in
a path-integration system, (2) we describe an imple-
mentation of a biological model of visual landmark
navigation using a panoramic visual system, (3) we
present and discuss data on the navigational perfor-
mance of the mobile robotSahabot 2, and (4) we
propose a new, more parsimonious model for visual
landmark navigation.

2. Path integration

Path integration — the continuous update of a home
vector by integrating all angles steered and all dis-
tances covered — is a navigation method widely em-
ployed by both animals and mobile robots. To use
this navigation mechanism, both distance information,
and even more important, directional information must
be available. In the simplest method of path integra-
tion used in robotics, distance and directional infor-
mation are derived from wheel encoders. There are
several reasons for the wide application of this sim-
ple path-integration method in robotics. First, for short
distances path integration using wheel encoders can
provide relatively accurate position estimation, sec-
ond, it is computationally cheap, and third, it can
be done in real time. However, path integration with
wheel encoders is prone to cumulative errors. Espe-
cially accumulation of orientation errors will cause
large position errors that increase significantly as a
function of the distance traveled. Several approaches
for dealing with these errors have been proposed (see
[5] for an overview). The most common approaches
use either specialized heading sensors, like gyroscopes
and magnetic compasses, or dedicated methods for
reducing odometry errors.

An example of this kind of approach is work done
in projects related to NASA’s Mars missions. Path
integration on theSojourner Mars rover was per-
formed with wheel encoders and a solid state turn
rate sensor. Because of the errors introduced in the

path-integration system, the position of the rover had
to be updated daily by observing the rover from the
lander, sending the images to Earth, detecting the
rover in the images, and sending the rover position
and heading back to the rover via the lander. The per-
formance of the rover’s path-integration system was
evaluated prior to the mission [32]. For a distance
of 10 m, standard deviations of 125 and 24 cm were
predicted for the lateral and the forward errors, re-
spectively. When the rover had to follow trajectories
where turning or driving over rocks was necessary,
these errors were much larger. The main conclusion
from these experiments was that reaching a target
position even in a distance of less than 10 m from the
lander would require external update of the position of
the rover. Future missions involve scenarios where the
rover will have to cover greater distances. This will
require solving the navigation problems and granting
greater autonomy to the rover. There are plans to use
a sun compass for obtaining the orientation of the
rover, but this has not been tested yet.

Central-place foragers such as bees and ants, which
primarily employ path integration to return to impor-
tant places in their environment, are known to gain the
compass direction from celestial cues, mainly from
the polarization pattern of the blue sky (reviewed
in [49]). In the following we describe a technical
polarized-light compass system derived from the cor-
responding system in insects and its application in
path-integration experiments.

2.1. Polarization vision in natural agents

Whereas in unpolarized light the e-vector oscillation
occurs equally in all planes, in plane-polarized light
there is a bias in favor of a certain oscillation plane
(direction of polarization). Polarization in the sky oc-
curs because the sunlight is scattered by atmospheric
molecules. The degree of polarization is greatest for
light scattered at an angle of 90◦ to the sunlight rays.
The directions of polarization (e-vectors) observed in
the sky form a regular pattern across the entire celes-
tial hemisphere (Fig. 2). The pattern of polarization
has a mirror symmetry with respect to the plane de-
fined by the solar and the anti-solar meridian (SM and
ASM in Fig. 2). Due to the daily westward movement
of the sun across the sky (by some 15◦ per hour),
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Fig. 2. 3-D representation of the pattern of polarization in the
sky as experienced by an observer in point O. Orientation and
width of the bars depict the direction and degree of polarization,
respectively. A prominent property of the pattern is a symmetry
line running through sun (S) and zenith (Z), called “solar meridian”
(SM) on the side of the sun and “anti-solar meridian” (ASM) on
the opposite side. Adapted from [46].

the symmetry plane, and with it the whole e-vector
pattern, rotates about the zenith. The pattern retains
two important characteristics over the day: its mirror
symmetry, and the property that along the symmetry
line the e-vectors are always perpendicular to the solar
meridian.

Although the polarization pattern of the sky is in-
visible to humans, many insects exploit it by using
the e-vector directions as a reference for compass ori-
entation. Insects have compound eyes consisting of
many discrete eyelets, the so-called ommatidia. Po-
larization vision is mediated by only a small group
of specialized, upward-directed ommatidia situated at
the dorsal rim of the eye (POL-area). Each ommatid-
ium contains two sets of polarization-sensitive pho-
toreceptors, which are tuned to orthogonal e-vectors
(crossed-analyzer arrangement); for a review see [49].

In insects, polarization-sensitive neurons (POL-
neurons) have been found in two different neural cen-
ters, the medulla of the visual lobes (crickets: [27],
ants: [28]) and the central body (locusts: [40]). The
medullar neurons receive input from photoreceptors
of the POL-area. The activity of these neurons is a si-
nusoidal function of e-vector orientation with an exci-
tatory and an inhibitory part and with the maxima and
minima separated by 90◦, indicating that they receive

antagonistic input from two polarization-sensitive
channels with orthogonal e-vector tuning orientations.
It is probable that the two channels are represented
by the crossed-analyzer configuration of the photore-
ceptor cells within each ommatidium of the POL-area
(Fig. 3). The crossed-analyzer configuration has the
advantage that it enhances e-vector contrast sensitiv-
ity and that it makes the e-vector response insensitive
to fluctuations of light intensity. There are three types
of cricket POL-neurons that are tuned to different
e-vector orientations, i.e., approximately 10◦, 60◦,
and 130◦ with respect to the body axis.

2.2. Polarization vision in an artificial agent

Recent studies have shown that a polarized-light
compass implemented in analog hardware is supe-
rior for extracting compass information compared
to traditional methods based on proprioception [29].
The basic components of the POL-compass are
polarization-opponent units (POL-OP units) that are
functionally similar to the POL-neurons found in
insects. Each POL-OP unit consists of a pair of
polarized-light sensors(POL-sensors) followed by a
log-ratio amplifier (see Fig. 4). The POL-sensors are
photodiodes with a linear polarizer and a blue trans-
mitting filter on top. In each POL-OP unit the polar-
izing axis of one POL-sensor was adjusted 90◦ to the
polarizing axis of the other sensor, thus mimicking
the crossed-analyzer configuration in the POL-area of
insect eyes. The signals of each pair of POL-sensors
were fed into a log-ratio amplifier. Three pairs of
POL-sensors were mounted on our mobile robot
Sahabot 2(see Fig. 5) and adjusted such that the po-
larizing axis of the positive channel was 0◦, 60◦, and
120◦ with respect to the robot’s body axis. The visual
fields of the POL-OP units were about 60◦ centered
around the zenith. The output of a POL-sensor is
described by the following equation:

s(φ) = KI (1 + d cos(2φ − 2φmax)). (1)

I is the total intensityI = Imax+Imin, with Imax, Imin
being the maximum and the minimum intensity, re-
spectively.d is the degree of polarization,φ is the
current orientation with respect to the solar meridian,
φmax is the value ofφ that maximizess (tuned e-vector
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Fig. 3. Processing of polarized-light information in the insect nervous system (after [27]). (A) Cross-section through an ommatidium of
the polarization-sensitive part of the cricket compound eye. Receptors are grouped in two channels with tuning to orthogonal directions
of polarization (hatched areas). (B) Principle of operation of a polarization-opponent neuron (POL-neuron) in the insect optic lobe. The
POL-neuron receives antagonistic input from the two receptor channels. Its response function represents a difference function (2-1) of the
receptor response functions (1, 2).

direction), andK is a constant [4]. The outputs of the
POL-OP units are described by

p1(φ) = log

(
1 + d cos(2φ)

1 − d cos(2φ)

)
,

p2(φ) = log

(
1 + d cos(2φ − 2

3π)

1 − d cos(2φ − 2
3π)

)
, (2)

p3(φ) = log

(
1 + d cos(2φ − 4

3π)

1 − d cos(2φ − 4
3π)

)
,

wherep1(φ), p2(φ), andp3(φ) are the outputs of the
POL-OP units tuned to 0◦, 60◦, and 120◦, respectively.

2.3. Methods for extracting compass information

There are two groups of models for using the
POL-OP responses to derive compass direction:
scanning modelsand simultaneous models[29]. In
scanning models, the agent has to first find the solar
meridian, and use it as a reference direction (0◦) for

its proprioceptive system. For doing that it has to
actively scan the sky by rotating around its vertical
body axis. When the output signal of one POL-OP
unit (or a suitable combination of multiple POL-OP
units) reaches its maximum, the robot is known to
be aligned with the solar meridian. After having
found the reference direction, it uses proprioceptive
information to find its heading direction.

In contrast, with asimultaneous model, the heading
direction can be determined continuously and no scan-
ning movements are necessary during the journey. In
the previously performed experiments [29], the com-
pass direction was obtained by comparing the current
output values of the POL-OP units with alookup table
that associates the output values of the POL-OP units
with the corresponding orientation of the robot. The
lookup table was recorded before each experiment by
a single 360◦ rotation of the robot. This study presents
a simultaneous model which does not require a lookup
table, but uses ananalyticalprocedure to derive com-
pass information from the values of the POL-OP
units.
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Fig. 4. Diagrammatic description of a polarization-opponent unit (POL-OP unit). A POL-OP unit consists of a pair of POL-sensors and
a log-ratio amplifier. The log-ratio amplifier receives input from the two POL-sensors and delivers the difference of their logarithmized
signals. The e-vector responses of the POL-sensors (1, 2) follow a cos2-function.

Fig. 5. Left: The mobile robotSahabot 2. Right: Robot sensors. From left to right: the panoramic visual system, polarized-light sensors,
ambient-light sensors.

Although the output signals of the POL-OP units
are independent of the light intensity due to the
cross-analyzer configuration, they still depend on the
degree of polarization (see Eqs. (2)). The amplitude
of the POL-OP signals is proportional to the degree
of polarization, which changes during the day be-
cause of the changing elevation of the sun (see Fig.
6) and due to clouds. Fig. 7 (left) shows the outputs

of the POL-OP units during a rotation of 360◦ at two
different times of the day.

One way to eliminate the dependence on the de-
gree of polarization is to use ascanning modelwhere
only the maxima of the signals are evaluated. In
a simultaneous model, however, the change in the
polarization pattern during the day has to be taken
into account. This can be done by either regularly
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Fig. 6. 2-D representation of the pattern of polarization in the sky (for a 3-D representation see Fig. 2) for two different elevations of the
sun (filled circle). The e-vector directions and the degree of polarization are indicated by the orientation and width of the black bars. The
shaded area indicates the visual field of the POL-OP units. Left: Sun elevation of 25◦. Right: Sun elevation of 60◦. Adapted from [49].

Fig. 7. Left: The outputs of the POL-OP units during a rotation of 360◦ at two different times of the day (i.e., with different solar elevation),
late in the afternoon (large amplitude) and early in the afternoon (small amplitude). Right: The outputs of the POL-OP units shown in the
left after normalization. The outputs of the corresponding units in the two different runs are completely overlapping in the figure.

updating the lookup table or by normalizing the out-
puts of the POL-OP units in the following way. First,
the POL-OP signals are delogarithmized by applying
a sigmoid function:

1

10p(φ) + 1
= p(φ). (3)

Eqs. (2) then become:

1 − 2p1(φ) = d cos(2φ), (4)

1 − 2p2(φ) = d cos

(
2φ − 2π

3

)
, (5)

1 − 2p3(φ) = d cos

(
2φ − 4π

3

)
. (6)

Two of the above equations can be used to derive
the values ofd andφ directly. For example from Eq.
(4) we find:

d = 1 − 2p1(φ)

cos(2φ)
(7)

and by substituting the value ofd in Eq. (5) we get:

tan(2φ) = 3 − 2p1(φ) − 4p2(φ)√
3(1 − 2p1(φ))

. (8)

From the above we find:

φ = 1

2
arctan

(
p1(φ) + 2p2(φ) − 3

2√
3(p1(φ) − 1

2)

)
. (9)
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Sincep1(φ), p2(φ), p3(φ) are known (sensor read-
ings), andp1(φ), p2(φ), p3(φ) are derived from these
values, we can determine the values ofφ andd. Note
that for this step onlytwoPOL-OP units are necessary
(p1 andp2 in the above equations).

Since the functions in Eqs. (4)–(6) have a period of
π , there will be two values ofφ (φ andφ+π ) satisfy-
ing Eqs. (4)–(6) for each tripletp1(φ), p2(φ), p3(φ).
This ambiguity cannot be resolved by referring to
the POL-OP unit signals. A different sensory modal-
ity has to be involved. Disambiguation between the
two candidate orientation values is done by employ-
ing a set of ambient-light sensors on the robot. Eight
ambient-light sensors are arranged in two half-circles
covering a visual field of 180◦ each. They are mounted
in the front part of the robot (see Fig. 5). The val-
ues from the ambient-light sensors are used to ob-
tain a rough estimate of the robot’s heading with re-
spect to the sun. If the robot is oriented towards the
sun then the ambient-light sensor with the visual field
enclosing the solar meridian will have a stronger re-
sponse than the other sensors. This estimate is used
to disambiguate between the two candidate orienta-
tions (φ, φ + π ) obtained from the POL-OP units. In
ants, spectral information from the sky is sufficient to
serve as a compass cue (without any polarized-light
information), and can, in addition, be used to solve the
ambiguity problem mentioned above [50].

We can now transform the current POL-OP read-
ings to signals that are independent of the degree of
polarization. This is done by substituting the value of
d from Eq. (7) in Eqs. (4)–(6) instead of using Eq.
(9). To optimize precision, the value ofφ can be cal-
culated by selecting the equation of the POL-OP unit
for which the signal curve is steepest at that point,
i.e., POL-OP unit 1 for 30◦–60◦, POL-OP unit 2 for
60◦–90◦ and POL-OP unit 3 for 90◦–120◦.

Fig. 7 (right) shows the results of applying such a
normalization process to the outputs of the POL-OP
units shown in Fig. 7 (left). The outputs of the POL-OP
units during a rotation of 360◦ were recorded at two
different times of the day, late and early in the after-
noon. The signals become independent of the degree
of polarization after the normalization process and are
practically identical. Thus, they can be used in a si-
multaneous model to calculate the orientation of the
robot with respect to the solar azimuth at any time of
the day.

2.4. Ephemeris function

As shown above, it is possible to derive the ori-
entation of the agent with respect to the solar az-
imuth by using the polarized-light compass. To use the
POL-compass over an extended period of time, how-
ever, requires compensating for the daily movement of
the sun. This task is complicated by the fact that the
rate of change of the sun azimuth is not constant. The
sun azimuth changes slowly in the morning and faster
around noon. Moreover, the ephemeris function, i.e.,
the function that describes the change of sun azimuth
over time, depends on the season and the geographical
latitude.

There is behavioral evidence that insects are
equipped with such an ephemeris function [30]. More-
over, recent studies in both bees [16] and ants [53] in-
dicate that the ephemeris function might be innate and
that insects can refine its precision by experience. In
our study we extended the model of the POL-compass
described above by including the ephemeris function
valid for the location and season of our experiments.

2.5. Path-integration mechanism

The directional information obtained from the
POL-compass was used in a path-integration mecha-
nism to keep an estimate of the robot’s position over
time (for the ants’ performances see [22,34]). The
position of the robot was calculated as follows:

x(t + 1t) = x(t) + cos(θ(t))v(t)1t, (10)

y(t + 1t) = y(t) + sin(θ(t))v(t)1t, (11)

wherex(t+1t), y(t+1t), x(t) andy(t) are thex and
y coordinates of the robot at timet +1t andt , respec-
tively, with 1t denoting the time step. The velocity of
the robotv(t) was estimated from the wheel encoders
of the robot. The wheel encoders of theSahabot 2are
mounted on the axes of the two motors that drive the
two front wheels (see Fig. 5) and give 6300 pulses
per wheel revolution, which corresponds to 13 pulses
per mm of distance traveled.θ(t) is the estimated ori-
entation of the robot at timet , obtained either from
the polarized-light compass or, alternatively, from the
difference between the accumulated wheel encoder
values of the left and right wheel.
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Fig. 8. Results of the experiments with the 15-segment trajectory for both POL-compass and proprioceptive system. Left: The trajectory
is drawn starting from the origin with the segment number printed at the end of each segment. Note that the trajectory passes three times
through the origin. Right: Zoom into the region around the starting position. The final positions of the robot during the experiments are
drawn as circles (wheel-encoder experiments) or triangles (POL-compass experiments). Mean and standard deviation of the data in the
direction of the axes are indicated by the centers and surroundings of the boxes for the two cases.

In the experiments described below, the perfor-
mance of the path-integration system obtaining di-
rectional information (θ(t)) from the POL-compass
(POL-compass system) is compared with a system
using proprioception to determine the orientation
(proprioceptive system). Both systems were running
in parallel providing independent estimates of the
robot’s position over time, but in each experiment
only one of the systems was used to control the
position of the robot. In both cases, the distance trav-
eled (the term:v(t)1t in Eq. (11)) was estimated by
referring to the wheel encoders.

2.6. Experiments

The path-integration experiments were performed
in Zurich (47.38◦N, 8.55◦E) on a square covered with
a soft synthetic material. Before each experiment, the
robot was placed at the starting position and aligned
with the geographic north. The robot was programmed
to follow a trajectory consisting of a number of straight
line segments of different orientations and different
lengths by using one of the two path-integration sys-
tems, namely the POL-compass system or the pro-

prioceptive system. The last segment of each trajec-
tory led back to the starting position. Two different
pre-programmed trajectories were used, one consist-
ing of 15 segments with a total length of 70 m (Fig.
8) and the other of 30 randomly generated segments
with a total length of 255 m (Fig. 9).

During the experiments, the data from the sensors,
i.e., the outputs of the POL-OP units, the light sensors
and the wheel encoders were logged to the robot’s
on-board PC. At the end of each experiment, the final
position of the robot was measured with a meter stick.
The distance between the final position of the robot
and the starting position was used as an overall error
measurement. To make a fair comparison, the wheel
encoders of the robot were calibrated carefully using
the square-path method described in [5].

2.7. Results

The data on overall robot performance in the
path-integration experiments with the 15-segment tra-
jectory are given in Table 1 and will be summarized
below. The robot performed well with both the pro-
prioceptive and the POL-compass system. The largest
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Fig. 9. Trajectories estimated by both the POL-compass system and the proprioceptive system during an experiment with a 30-segment
trajectory. The final positions of the robot as estimated by both systems and the real final position are also drawn. Left: The robot was
controlled by the proprioceptive system. Right: The robot was controlled by the POL-compass system.

Table 1
Overall performance of the robot with the two path-integration
systems in the experiment with the 15-segment trajectory. Average
error and standard deviations indicate deviations from the target
position at the end of the experiments.n indicates the number of
experiments

POL-compass Proprioception

Average error (cm) 13.5 51.9
Standard deviation (cm) 6.3 28.8
Min (cm) 5 11
Max (cm) 27 109
n 9 9

error recorded in these experiments was just about
1.1 m. The average errors were 13.5 and 51.9 cm
for the POL-compass system and the proprioceptive
system, respectively. The POL-compass system was
clearly more precise than the proprioceptive system
(U-test,p = 0.0023). Both the mean deviation from
the target position and the standard deviation of the
error were smaller. Fig. 8 visualizes the trajectory and
the final positions of the robot.

During the experiments, the POL-compass system
and the proprioceptive system produced different es-

timates of the position of the robot. Although the dif-
ference between these estimates was initially zero, it
increased significantly in the course of a run. This
can be seen clearly in two other experiments where
the robot had to follow a trajectory consisting of 30
randomly generated segments. Fig. 9 shows the tra-
jectories as estimated from the POL-compass and the
proprioceptive system. In the two experiments shown,
the robot was controlled by either the proprioceptive
(Fig. 9, left) or the POL-compass (Fig. 9, right) sys-
tem. As can be seen, the final positions of the robot as
estimated with the POL-compass system (depicted by
the triangles) are close to the real position of the robot
(depicted by the squares). The deviation was 67 and
29 cm when controlled by the proprioceptive or the
POL-compass system, respectively. The final position
of the robot as estimated from the proprioceptive sys-
tem is about 4.3 m away from the real position when
controlled by the proprioceptive and 3.3 m when con-
trolled by the POL-compass system. (Fig. 10) shows
the deviation between the two estimates over time for
the experiment depicted in Fig. 9 (left). The deviation
increases over time reaching a value of 60◦ at the end
of the 30th segment (after 12 min).
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Fig. 10. Deviation between the orientation estimates by the
POL-compass (solid line) and by the proprioceptive system (dot-
ted line). At the beginning of the experiments both estimates are
the same but the difference (dashed line) increases over time.

2.8. Discussion

The construction of the polarized-light compass for
the Sahabot 2was guided by the experiences gained
with its predecessor employed on the robotSahabot
[29]. While in the first version the polarizing axis of
each POL-sensor could be adjusted independently, the
polarizers are now rigidly mounted in openings of an
aluminum plate, thereby excluding slackness of the
adjustment gears as an error source, and reducing size
and weight of the device. We retained the tuning to
three e-vector directions with 60◦-intervals since this
guarantees a fairly constant resolution for all e-vector
directions. A discussion of correspondences and dif-
ferences between the POL-neurons of insects and the
POL-OP units of the POL-compass can be found in
[29]: Although the POL-OP units have basically the
same properties as POL-neurons, there are simplifica-
tions concerning the number of sensors, the orienta-
tion of the visual fields, and the tuning directions.

Compass direction is derived from the outputs of the
three POL-OP units with a novelsimultaneous model.
In contrast to ascanning model, no scanning move-
ments are necessary during the journey to determine
the orientation of the robot. Moreover, deviations from
the set course can immediately be compensated. A
previously testedsimultaneous model[29] was based
on the construction of a lookup table prior to the ex-
periment. Changes in the degree of polarization along
with changing elevation of the sun restrict the applica-

bility of a lookup table to short-term excursions. In the
simultaneous modelpresented in this study, the degree
of polarization is eliminated by analytically combin-
ing the signals of two POL-OP units. This allows to
determine the orientation of the robot with respect to
the solar–antisolar meridian over extended periods of
time.

In addition to the changes in the degree of polariza-
tion, in long-term runs errors in the orientation with
respect to geographic north are introduced by the west-
ward movement of the sun. To eliminate these errors,
the novelsimultaneous modelwas complemented with
an ephemeris function describing the azimuthal posi-
tion of the sun in dependence of the time of day. The
geographical latitude, a parameter of the ephemeris
function, was defined in the control program accord-
ing to the location of the experiments.

In the experiments performed to evaluate the preci-
sion of the POL-compass system in the first version of
theSahabot[29], the robot had only to maintain a tar-
get course direction over a certain distance. The cor-
responding experiments performed in this study em-
ploy the POL-compass in a path-integration system
that enables the robot to follow arbitrary trajectories,
thus getting closer to the actual foraging behavior of
the ants.

Although the distances covered in the excursions
of ants and in the robot experiments are in the same
range [47], it is difficult to compare the homing pre-
cision of these agents, since both their size and their
method of propulsion are completely different. There-
fore we merely summarize the results from animal
experiments presented in [55] and contrast them with
the results of the robot experiments. In the animal ex-
periments, the end of the straight homeward run in a
test field is marked by a sharp turn that indicates the
position where the home vector becomes zero. One
group of ants was approaching a known food source
on a straight outbound run, covering a total distance
of approximately 40 m. The second group of ants was
foraging along tortuous routes before they accidently
found a piece of food and returned home. From the
foraging times given it can be concluded that the ants
of the second group covered a mean distance of ap-
proximately 180 m. The distance of the turn point from
the fictive nest position was on average 1.3 m for ants
in the first group and 2.2 m for ants in the second
group (for details see [55]). In the robot experiments,
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the mean error amounted to 13 cm for a path length
of approximately 70 m when using the POL-compass.
For the two 30-segment trajectories with a length of
255 m estimated by the POL-compass system, errors
of 67 and 29 cm were recorded.

The precision of the POL-compass system can be
evaluated by a comparison of a path-integration system
which derives orientation from the POL-compass with
another system where orientation is computed from a
carefully calibrated proprioceptive system (wheel en-
coders). Results obtained in experiments where the
robot had to travel along a 15-segment trajectory with
a total length of 70 m demonstrate that the standard
deviation of the final position error is by a factor of
approximately 5 smaller in the POL-compass system
(Table 1). The systematic deviation of the mean posi-
tion that was observed for the POL-compass system is
probably caused by a slight inclination from the hor-
izontal at the outer parts of the test field. This causes
a shift of the visual field of the POL-OP units away
from the zenith where the pattern exhibits a mirror
symmetry (see Fig. 6). Integration over the visual field
which is not centered on the solar–antisolar meridian
will therefore result in a total e-vector which is not
perpendicular to this meridian.

The use of an inertial navigation system for
path integration would be another alternative to the
above-mentioned methods. The advantage of inertial
navigation systems is that they are self-contained and
can provide very fast and dynamic measurements. The
main disadvantage of such a system is that it drifts
over time, a fact that also makes a direct comparison
with the POL-compass system difficult. A sophisti-
cated and relatively cheap inertial navigation system
was developed by Barshan and Durrant-Whyte [1,2]
based on combinations of different solid-state gyros.
They reported a typical error of 12◦ after 5 minutes
(commercial, high-quality and expensive inertial nav-
igation systems have a typical drift of about 2 km
after 1 hour).

While the design of the POL-OP units closely corre-
sponds to the e-vector detection system of insects, all
components of the path-integration system — the core
of thesimultaneous model(Section 2.3), the ephemeris
function (Section 2.4), and the path-integration itself
(Section 2.5) — are implemented in an analytical way
without directly taking into account the specific pro-
cessing capabilities of a neural substrate. It is, for

example, known that ants solve the path-integration
problem not by performing true vector summation, but
by employing an approximation, resulting in system-
atic navigational errors under certain circumstances
[34]. A neural model of the path-integration process
was proposed in [22], but neurophysiological or neu-
roanatomical data are not available so far. Besides this,
the experiments with path integration were conducted
in order to evaluate the precision of the POL-compass
system, which would have been more complicated by
using the approximative procedures that animals resort
to or by implementing plausible neural models. Tak-
ing the analytical models — which have been demon-
strated to give the desired results — as a starting point,
corresponding neural models could be derived.

3. Visual piloting

While path integration employing a skylight com-
pass is the primary strategy thatCataglyphisants are
using to return to the vicinity of their nest, errors in-
troduced by the path-integration process would result
in a wrong estimate of the nest position [55]. Since the
nest entrance is an inconspicuous hole in the desert
ground (see Fig. 11) which is invisible to the insect
even from a small distance, alternative strategies have
to be employed in order to finally locate the entrance.

3.1. Visual piloting in natural agents

In the absence of visual landmarks,Cataglyphis
will start a systematic search at the position where the
nest is expected after having reset its path-integration
system [51]. However, when landmark information is
available, both bees [6] and ants [52] will exploit it,
and they will relocate the target position directly with
a remarkable precision (see Fig. 11).

A number of experiments performed with bees [6]
and ants [52,54] have unveiled important properties
of the insect’s landmark navigation system. The main
conclusion from these experiments is that the ani-
mal stores a rather unprocessed visual snapshot of the
scene around the goal position. By matching this snap-
shot to the current retinal image, the insect can derive
the direction it has to move in order to relocate the
target position where the snapshot was taken. There is
evidence from experiments in which several parame-
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Fig. 11. Landmark navigation experiment withCataglyphis. During the training period, the nest entrance was marked by three cylindrical
landmarks (represented by filled circles). For the experiment, an ant that just returned from a foraging trip to the nest entrance (small
hole shown in the photograph, right) was captured and displaced to a test field with an identical landmark configuration. Since the
path-integration system was reset to zero, the ant could only rely on landmark information for locating the nest. It nevertheless searched
very precisely at the center of the array, i.e., at the fictive location of the nest. Adapted from [52]; photograph by R. Wehner.

ters of the landmark configuration have been manipu-
lated that the snapshot matching strategies exploit dif-
ferences in the bearing, apparent width, and apparent
height of the landmarks between snapshot and current
retinal image. The models presented in the following
only consider apparent width as one aspect of the ap-
parent size of a landmark.

A model for the matching of snapshot and current
view was proposed in [6], which reproduces many as-
pects of the search behavior of bees. Fig. 12 visualizes
the matching process of this model. A snapshot (inner
ring) is taken at the nest position marked with a cross
and thick arrow in Fig. 12 (the arrow indicates the
compass orientation of the snapshot, see Section 3.5).
It consists of a number of filled and open sectors corre-
sponding to landmarks and gaps between landmarks,
respectively. Snapshot and current view (middle ring)
match completely at the nest position. When the agent
is displaced to a different position in the environment,
both the azimuthal positions and apparent sizes of the
landmarks on the retina change. As a result, snapshot
and current view are not matched anymore. A home
vector, pointing approximately to the direction of the
nest position, can be derived by pairing each sector in
the snapshot with the closest sector of the same type
(open or filled sector corresponding to a landmark or
a gap, respectively) in the current view. Note that for
this pairing process snapshot and current view have to

be aligned in the same compass direction (see Section
3.5). Each pairing generates two unit vectors that are
attached to the center of the matched sector in the snap-
shot (in Fig. 12 the vectors are attached to the outer
ring for clarity): a tangential vector pointing from the
snapshot sector towards the paired sector in the cur-
rent view, and a radial vector, which points centrifu-
gally, if the apparent size of the current view sector is
smaller than the size of its counterpart in the snapshot,
and vice versa. The home vector (arrow originating
from the center of the rings) is derived by summing
all unit vectors. For the weighting of tangential and
radial contributions a ratio of 1 : 3 was suggested [7].

3.2. Visual piloting in artificial agents

Traditional approaches to visual robot navigation
are usually based on determining the robot position
from geometrical maps (reviews can be found in
[3,25,26]). Typically, the computational complexity
required for these methods by far exceeds the limits
that can be assumed for insects. Recent changes in
the robotics paradigm towards “cheaper” methods
replace position-based navigation by methods which
regard “homing” as the basic navigation ability (for an
overview see [19]). In particular, homing methods are
used in conjunction with topological maps [18,26].
There are two different approaches to image-based
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Fig. 12. Left: Diagrammatic description of the originalsnapshot modelproposed in [6] for a configuration of three landmarks. The snapshot
position is marked by a cross with a thick arrow (indicating the compass orientation associated with the snapshot). The matching process is
visualized for two different positions, the snapshot position (center) and another position in a distance from the snapshot position (bottom
right). The inner ring in the two diagrams depicts the snapshot (black), the second ring the current view (grey). Vectors contributing to
the home vector (originating from the center) are attached to the outer ring. For clarity of the diagram, the weighting of the contributing
tangential and radial vectors was chosen as 1 : 1, while a ratio of 1 : 3 was used in [6]. Right: Trajectories following the home vectors
generated by the model. Each trajectory starts at a point on a grid.

homing, called “local” and “associative” homing [23].
Local homing methods gradually align a current view
with a snapshot stored at the target position by de-
riving a direction of movement from the differences
between the two images [19,23].Associativehoming
methods associate stored scenes with movement vec-
tors pointing towards the goal [8,20,35]. A disadvan-
tage of the latter is that they require some additional
means like path integration to determine the home
direction which can be associated with a scene.

The snapshot modelpresented in the previous sec-
tion belongs to the class of local homing methods.
Hong et al. [23] describe another local method which
is based on feature correlation. According to certain
criteria, “characteristic points” are selected from each
view and paired with characteristic points in the other
view by computing a measure of similarity between
the two windows around the characteristic points. In
the snapshot model, on the contrary, only a small set
of features — preferably those that are not affected by
spherical distortions — have to be matched in the two
images. In the original form of the model, these fea-
tures are the two types of image regions; vertical con-
trast edges could be another choice [33]. A comparison
of the complexity of the two methods is not feasible at
the moment, since the environment used by Hong et
al. was more complicated than the simple setup used in
the experiments described below, and it is not known
so far, how much effort has to be spent for the feature

extraction in more complex environments. The match-
ing process itself, though, is considerably simplified
in the snapshot model, since a feature is matched to
the closest feature of the same type according to their
position in the image, instead of having to deal with
image windows for that purpose. Therefore it was also
feasible to derive a parsimonious neural equivalent of
the snapshot model that provides additional support for
the model from the neurobiological perspective [33],
whereas it is not clear, if the same parsimony could
also be achieved for a neural circuit implementing the
method of Hong et al.

In order to employ the snapshot model on a mo-
bile robot, the required sectorized representation has
to be extracted from a camera image, which will be de-
scribed in Section 3.4. Moreover, the snapshot model
itself has to be modified so that it can be used together
with the robot control strategy, as discussed in the fol-
lowing section.

3.3. Proportional vector model

In the original model presented in [6], all contribut-
ing vectors have unit length. This model does not
take into account the magnitude of the differences be-
tween snapshot and current view. For each pair of sec-
tors there are two unit vectors generated, irrespective
of their differences in azimuthal position or size (see
Fig. 12).
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Fig. 13. The snapshot model with proportional vector contributions.
Radial vectors have a length proportional to the difference in size
between the paired sectors. The length of the tangential vectors
is proportional to the difference in bearings of the paired sectors.
For clarity only those vector contributions are shown that result
from the pairing of landmark sectors in the two views, whereas
gap sectors are not considered.

Having some information about the distance to the
target position is important for mobile agents. When
the agent is close to the target position it will have to
slow down in order not to overshoot the target, while
when it is far way it can speed up to reach the target
area faster. In addition, distance information can be
used to define the end of an experiment, i.e., to stop the
robot when it is close to the target position. Here we
propose an extension to the original snapshot model
that incorporates this information into the model.

The unit vectors can be replaced by vectors with
a length proportional to the difference in bearing,
and apparent size, of the paired sectors. The resulting
model, calledProportional Vector model(PV model),
has in common with the original model that the
matching process is performed the same way. Again
each sector in the snapshot is paired with the closest

Fig. 14. Left: Time course of the disparity (length of the home vector) in a simulation of the original snapshot model using unit vector
contributions, and of a model where vector contributions have a length proportional to differences in bearing and apparent size of sectors.
Note that disparity is a relative measure that can be scaled arbitrarily. Within one simulation step, the home vector is computed and a
movement with constant length in this direction is executed. Right: Corresponding trajectories running towards the snapshot position in
the center.

sector of the same type in the current view resulting
in two vectors. It differs from the originalsnapshot
model in that the size of the radial vectors and the
tangential vectors is proportional to the difference in
size and bearing between the paired sectors, respec-
tively (see Fig. 13). When the difference in azimuthal
position between the paired sectors is large, the corre-
sponding tangential vector will also be large, resulting
in a larger contribution to the final home vector. The
same applies for the radial vectors, i.e., when the
difference in size between the paired sectors is large,
then the contribution of this pairing to the final home
vector will also be large. For contributions resulting
from differences in bearing, a weighting of the vector
length with the angular difference has been suggested
before (see discussion in [19]).

This modification enables the use of thelengthof
the home vector as a measure of discrepancy between
current view and snapshot, called “disparity” in this
study. This is not possible with the unit vector model,
since the disparity is not decreased while approach-
ing the snapshot position; it will only become zero if
a perfect match between snapshot and current view is
achieved (see Fig. 14). Using proportional contribu-
tions, the robot runs can be stopped when the disparity
falls below a threshold. For the weighting of tangen-
tial and radial contributions, the same ratio of 1 : 3 as
in the originalsnapshot modelwas used.

3.4. Visual system and image processing

The camera system mounted in the front part of
the robot (see Fig. 5) consists of a digital CCD
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camera and a conically shaped mirror in the ver-
tical optical axis of the camera. The conical mir-
ror was made of polished brass that went through
a chrome-plating process to improve the optical
quality.

With the help of the conical mirror, a panoramic,
360◦ view is obtained; a similar imaging technique
was used in [9,19,39,57] (for a detailed description
see [10]). When the axis of the cone coincides with
the optical axis of the camera, horizontal slices of the
environment appear as concentric circles in the im-
age. Special adjustment screws located at the base of
the camera module were used for tuning the optical
axis of the camera. In order to see the horizon, the
opening angle of the cone was determined by con-
sidering the visual field angle of the CCD camera. In
the experiments described here, the opening angle of
the cone was chosen so that the visual field extends
±10◦ around the horizon. The whole camera module
was mounted as low as possible on the robot within
the construction constraints, which brings the mirror
to a height of approximately 27 cm above the ground.
In order to reduce the total light intensity, a neutral
density filter was mounted between camera and mir-
ror. An additional infrared filter was necessary to pre-
vent the influence of thermal radiation on the camera
image.

Fig. 15 illustrates the image processing steps from
the camera image to a horizonal view with black and
white sectors as required by the matching mecha-
nism described in Section 3.3. The same processing
steps were applied to both snapshot and current
views.

In a first step, the camera image (obtained from a
situation similar to the one shown in Fig. 16) is trans-
formed into an azimuth-elevation representation. A
mean grey value is determined from the transformed
image and used to adjust the brightness parameter of
the camera in a way that the mean grey value of this
image is kept constant over time. This is indispensable
for the subsequent thresholding operation separating
dark and bright regions. An area enclosing the hori-
zon (horizonal area in Fig. 15) is then extracted from
the thresholded image. The final one-dimensional hor-
izontal view is obtained by counting the number of
black pixels within the part of each pixel column con-
tained in the horizonal area and applying a threshold
of 50%.

Fig. 15. Image processing for landmark navigation. The image
from the 360◦ camera (160× 120 pixel) is transformed into a
polar view (351× 56). After applying a threshold to each pixel,
a horizonal area is extracted (351× 20). The segmented horizon
(351 × 1) is derived from the horizonal area. A pixel in the
segmented horizon will be black, if more than 50% of the pixels
in the corresponding column are black. The object between the
two landmarks on the left is equipment in the vicinity, which was
removed for the experiments.

3.5. View alignment

An important prerequisite of the matching pro-
cedure between snapshot and current view is the
alignment of both views with respect to an external
compass reference. Without proper alignment, the
number of false matches between sectors — sectors
in the two views that are paired, but do not corre-
spond to the same landmark or gap — will increase
significantly, resulting in an erroneous home vector.
Bees might accomplish this alignment by maintain-
ing a constant orientation of the body during learning
and searching for a goal [12]. For some species of
Cataglyphis, rotation on the spot interrupting the



D. Lambrinos et al. / Robotics and Autonomous Systems 30 (2000) 39–64 55

Fig. 16. Example of a landmark array used for the navigation experiments. The grid visible on the desert ground was used for the alignment
of landmarks and robot, and for the registration of the final robot position.

forward movement has been observed [49], but it is
not clear, if this behavior could also serve for the
alignment of the views. Aninternal rotation of either
snapshot or current view could be excluded for ants
by experiments on intra- and inter-ocular transfer of
information [52]. But even if the assumption of retino-
topically fixed views holds and body rotation can be
excluded, the alignment could be accomplished by
storing a set of snapshots taken in different orienta-
tions at the same location and activating them selec-
tively according to the current compass bearing [6].
Ants could derive the compass information required
for one of the above-mentioned alignment methods
from the polarization pattern. In the robot experi-
ments described here, we used the POL-compass to
internally rotate the current view so that it is aligned
with the snapshot.

3.6. Experiments

Robot experiments were performed in the same
area where the experiments withCataglyphishave
been performed over many years, namely in southern
Tunisia near the village Maharès (34.58◦N, 10.50◦E)
in August–September 1997. The experimental field
was a sandy salt-pan flat shared with other researchers
performing experiments onCataglyphisnavigation.

The experiments were performed from 6:00 AM to
11:00 AM and from 3:00 PM to 7:30 PM in order to
avoid direct sunlight on the POL-sensors.

An example of a landmark configuration used in the
robot experiments is shown in Fig. 16. The grid painted
on the desert ground (40× 40 m) is used to align the
landmarks and the robot as well as to record the robot
trajectories. Before each experiment, the robot was
placed at the starting position — which corresponds
to the “nest position” and is identical to the target
position — and aligned with one of the axes of the grid.
The experiments reported here were performed with
an array of three landmarks arranged in an equilateral
triangle whose sides were 3 m long. The landmarks
were black cylinders with a height of 80 cm and a
diameter of 30 cm. The starting position was situated
on a symmetry line of the triangle in a distance of 1 m
from one of the landmarks.

At the beginning of each experiment, a snapshot was
taken at the starting position, processed as described
in Section 3.4, rotated to a standard orientation using
the angle obtained from the POL-compass (see Section
3.5), and stored in the form of black and white sectors.
After taking the snapshot, the robot had to follow a
certain direction (80◦ or 220◦E) for some distance (2
or 4 m) corresponding to a short foraging journey of an
ant (see Fig. 17, left). For this purpose, the robot could
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Fig. 17. Landmark navigation experiment with the robot. Left: Two typical trajectories of the robot in an array of three landmarks (filled
circles). From the end of the preprogrammed outward journey (dashed) towards the target position (0,0) the robot is guided by landmark
navigation (solid line). Center: Transitions of the rotated current view over time towards the snapshots (images underneath each trace) for
the two trajectories. Right: Time course of disparity between snapshot and current view for the two trajectories. The dashed line depicts
the threshold used for terminating the runs.

also have been displaced manually. At the end of the
outward journey, control was handed over to the visual
homing algorithm, which performed the extraction of a
sectorized horizontal view from the camera image, the
alignment of this view with the compass direction, and
the computation of the home vector by matching the
aligned view to the snapshot using thePV model. The
resulting home vector was used to set the direction of
movement. As soon as the disparity between snapshot
and current view became lower than a threshold, the
experiment was stopped (see Fig. 17, right).

3.7. Results

Eight runs (including trajectories A and B in Fig.
17) with different angles and distances of the outward
journey were performed with this landmark configura-
tion. The final parts of the eight trajectories are shown
in Fig. 18 (left). The deviation between final and initial
position of the camera axis was between 7 and 20 cm.
This deviation does not reflect the ultimate precision
of the homing mechanism, though, since the final po-
sitions are locations where the disparity reached the
termination threshold, but not locations with zero dis-
parity. In addition to the final positions, those points
on the trajectories are marked, where the disparity
reaches 1.5 times the threshold. For comparison, the
right part of Fig. 18 visualizes the disparity for points
in the vicinity of the snapshot location obtained in a
simulation. Final positions as well as the points where
1.5× threshold was passed are in accordance with the

disparity plot, since they can be thought to be located
on roughly oval bands around the snapshot position,
with all final positions (except one) on the inner band.
Since the band of the final positions and the band of
the intermediate (1.5× threshold) positions are not
overlapping, noise induced to the disparity from the
sensor signal seems to be in a range below the termi-
nation threshold. Therefore it can be assumed that a
reduction of the termination threshold will bring the
final position closer to the snapshot location. This will
require a specialized control algorithm for the final
phase of the approach that will allow the robot to lo-
cate the target position more precisely.

3.8. Average Landmark Vector model

A common characteristic of thesnapshot modeland
theProportional Vector modelpresented in the previ-
ous sections is that they presuppose that there is an
advantage in having a snapshot image stored in mem-
ory. However, in this section we will show this not to
be the case. We propose a new model for visual land-
mark navigation in insects, called theAverage Land-
mark Vectormodel (ALV model).

A description of the ALV model is given in Fig.
19. In the ALV model, each visual landmark feature
(in this case sector centers) is associated with a unit
vector pointing from the current position of the agent
towards the landmark feature (lancur

1 andlancur
2 in Fig.

19). This vector is called alandmark vector. When
the agent is at the target position (nest position) all
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Fig. 18. Left: Final parts of 8 homing trajectories obtained in the landmark-navigation experiments (for the configuration in Fig. 17,
including trajectories A and B shown there). The trajectories and final positions relate to the position of the camera axis. Circles (⊕)
indicate the positions where the robot stopped as it reached the termination threshold. Small dots are placed on the trajectories at points,
where the disparity dropped below a value of 1.5 times the termination threshold. Dashed lines depict iso-disparity curves. Right: Disparity
in the vicinity of the snapshot location. Grey regions are restricted by equidistant iso-disparity curves; disparity decreases when approaching
the snapshot position.

Fig. 19. Diagrammatic description of the ALV model. Each landmark featurei in the visual field — in this version of the model sector

centers — is associated with a unit vector, called landmark vector (lancur
i , lantar

i ). All landmark vectors are averaged to produce a single
Average Landmark (AL) vector. At every point, the home vector — computed as the difference between the current AL vector and the
vector at the target position (ALVcur − ALVtar) — gives the approximate direction to the target position.
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Fig. 20. Left: A version of the ALV model using edges as landmark features. Snapshot and current view are depicted as in Fig. 12. Vectors
attached to the outer ring are landmark vectors contributing to the dashed Average Landmark vector (AL vector) computed for the snapshot
position. The thin solid vector is the current AL vector, and the thick solid vector is the home vector. Right: To give more weight to size
information contained in edges, vectors perpendicular to the landmark vectors can be added (shown on the outer circle). This is beneficial
in environments with only a few landmarks as in this case. For two symmetrical positions, the home vectors were calculated without (left
position), and with increased size weighting (right position). In the latter case, the agent moved in a more direct way towards the target
position as shown by the corresponding trajectories.

landmark vectorsare averaged to produce theAverage
Landmark Vectorof the target position (ALVtar). This
vector is stored. The same process is repeated again
when the agent is in a different position, and the re-
sulting AL vector (ALVcur) is “compared” to the stored
AL vector at the target position by simply subtracting
them (ALVcur − ALVtar). The “home vector” resulting
from this subtraction gives the approximate direction
to the target position. Note that also the ALV model
requires compass information to align the vectors to a
geocentered coordinate system.

The new model has an interesting property. It re-
quires considerably less computational resources than
any of the snapshot models that we saw until now: in
terms of memory, all the agent has to “remember” is
the AL vector in the target position (two values in-
stead of an image); in terms of computation, determin-
ing the home vector is done by subtracting two AL
vectors (vector subtraction instead of image matching
procedure).

In the version of the ALV model presented in Fig.
19, sector centers are used as landmark features. As
in the snapshot model, this requires determining the
center of the landmark by considering its width. This
is not necessary when edges are chosen as landmark
features. In this case each landmark will generate two
landmark vectors corresponding to the two edges that
separate the landmark from the background. Fig. 20
(left) demonstrates this in an environment with two
landmarks.

An emergent property of the ALV model with edges
is that it implicitly incorporates information about the
apparent size of landmarks. When a landmark is large,
or the agent is very close to it, then the edges asso-
ciated with the landmark will be further apart, and
the corresponding AL vector (the average of the two
edge vectors) will be very small. More specifically,
the size of the AL vector is 2 cos(1

2φ), whereφ is
the difference in bearing between the two edges. One
way to increase the influence of the apparent land-
mark size on the final home vector is by artificially
moving the edges apart. This can be done by adding
a vector perpendicular to each edge vector as can be
seen in Fig. 20 (right). The direction of this tangen-
tial vector depends on the polarity of an edge: it al-
ways points away from the landmark sector. Increas-
ing the weighting of size information can be benefi-
cial when the environment contains only a few land-
marks, since in these cases it results in trajectories
that lead more directly to the target. All models dis-
cussed in this paper including the ALV model have
been shown in simulations to work reliably even in the
presence of a large number of landmarks which are
mutually occluding each other, as can be seen in Fig.
22. Occlusion also affects the apparent size of a land-
mark — regardless if computed explicitly by count-
ing the number of pixels as in the snapshot model
or implicitly using perpendicular vectors as suggested
for the ALV model — which seems to be tolerated by
these methods.
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Fig. 21. Thedifference vector model, a version of the snapshot
model, where the contributing vectors are computed as difference
between unit vectors pointing towards the current view sectors
and the snapshot sectors. Note that as in the snapshot model
mismatches can occur, as visible in the diagram on the left. Views
and vectors are depicted as described in Fig. 12. Only differences
in bearing and only landmark sectors have been considered in this
example.

Another important property of the ALV model is
that under certain assumptions it generates home vec-
tors that are identical to the home vectors generated
by a version of the snapshot model, the so-called
difference vector model(see Fig. 21). The difference
vector model differs from the proportional vector
model (in a version where only contributions from
differences in bearing are considered) only in that the
tangential vectors of the proportional vector model
are replaced by “secant” vectors. These vectors are
obtained by computing the difference between a unit
vector pointing towards the current view sector and
the corresponding sector in the snapshot. With the
contributing vectors of the PV model they share the
property that their length is a monotonic function of
the angular difference between the matched sectors.
The pairing of the sectors in the two views itself
is performed in the same way as in the snapshot
model.

Leaving out the increased influence of the landmark
size, the Average Landmark vector is computed by
simply summing (or averaging) all landmark vectors.
This is described by

ALVtar =
n∑

i=1

lantar
i , ALVcur =

n∑
i=1

lancur
i , (12)

whereALVtar, ALVcur are the AL vectors at the target
and current position, respectively, andlantar

i , lancur
i are

the landmark vectors at the target and current view
positions, respectively. The home vectorh is then de-
rived by simply subtracting the two AL vectors:

h= ALVcur − ALVtar =
n∑

i=1

lancur
i −

n∑
i=1

lantar
i

=
n∑

i=1

(lancur
i − lantar

i ). (13)

The same home vectorh expressed by the last term
is produced by difference vector model under the as-
sumption that all landmarks are matched correctly, i.e.,
that lancur

i and lantar
i correspond to the same land-

mark i, which is guaranteed in the vicinity of the tar-
get location. This has an important implication. One
interpretation of the above derivation is that the ALV
model implicitly always establishes the correct match-
ing. This is not the case with the other models, where
depending on the position of the landmarks wrong
matches can occur, as demonstrated in Fig. 21 for the
difference vector model.

As was shown above, the ALV model is under-
pinned by its similarity with a variation of the snap-
shot model. In addition, the ALV model can be re-
lated to O’Keefes “centroid” model [36]. The centroid
is the geometric center of mass of the landmark cues
in the environment and can be computed as the aver-
age of difference vectors between the location of each
landmark and the current position of the animal (“cue
vectors”), provided that not only the bearings of the
landmarks are known, but also their distance from the
current position. The difference of the centroid vector
computed for the current and the target location points
from the current location exactly to the target. The
ALV model can be derived from the centroid model
by replacing the cue vectors with unit vectors that
have the same orientation. This modification — which
is comparable with the “equal distance assumption”
underlying the homing scheme of Franz et al. [19] —
is motivated by the fact that distance information is
difficult to infer from the visual input. The tradeoff for
this simplification is that the home vector has to be
recomputed in the process of approaching the target
location, whereas a single computation is sufficient in
the centroid model.

Since the ALV model is closely related to the snap-
shot model and the extraction of the landmark cues
from the images would be identical to the one de-
scribed in Section 3.4, robot experiments using the
ALV model in a similar setup would not provide ad-
ditional insights at this point. We are currently inves-
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tigating the application of the ALV model to indoor
navigation in an office environment.

3.9. Discussion

Panoramic vision systems of the type that is used
on theSahabot 2— a camera with vertical optical axis
facing a convex mirror — are a relatively simple tech-
nical solution to obtain a 360◦ view, compared to the
use of multiple or rotating cameras. In the present
study, this vision system emulates the full or almost
full panoramic vision of insects [46,48], at least near
the horizonal plane. Of course, the rectangular CCD
sensor does not reproduce the distribution of omma-
tidia across the insect eye. In the eyes ofCataglyphis
bicolor, maximum resolution (3◦) is reached in those
parts that look at the horizon, whereas the resolution is
smaller in the upper and lower half of the eye (7◦) [46].
In the technical vision system, resolution increases
with increasing elevation of the pixel, but since only
the horizonal portion is extracted from the polar view
(see Fig. 15), this difference can be neglected. In the
ant’s eyes, the 3◦ resolution is approximately constant
along the horizon, which is also the case for the tech-
nical counterpart with its 2◦ resolution. The resolu-
tion is limiting for the application range of the visual
homing mechanism: as visible in Fig. 17, in a distance
of approximately 4 m the landmarks occasionally dis-
appear from the sectorized image.

It would have been interesting to use in our robot ex-
periments those landmarks that are relevant to the ants
in their natural habitat. However, whereas the ant’s
eyes are about 0.5 cm above ground, the mirror of the
robot’s visual system is at 27 cm height. Objects like
small shrubs or stones that stick above the horizon of
the ants and are therefore visible as a skyline against
the bright sky as background may be far below the
horizon for the robot. From its higher perspective, the
frequent shrubs in the vicinity of the test field form a
single band around the horizon which can not be sep-
arated into distinct landmarks. Therefore in the exper-
iments black cylinders (as visible in Fig. 16) — of the
same type also used in the ant experiments — served
as landmarks.

In this environment and with the artificial land-
marks, simple image processing steps are sufficient to
link the camera image with the representation required
for thesnapshot model. For natural landmarks and en-

vironments without the advantage of a free horizon,
more elaborate image processing routines will be nec-
essary. The application of a functionally similar hom-
ing method to indoor navigation is currently under in-
vestigation.

The snapshot modelwas developed in order to re-
produce the search behavior of bees [6]. Experiments
have shown that the basic assumption — a snapshot
image or information derived from this image is stored
in the target position — also holds for ants [52,54].
However, details about the form of this snapshot (im-
age, vector) and the specific method ants use to de-
rive a home vector by matching snapshot and cur-
rent view are not known so far. A systematic inves-
tigation would be necessary to find out if the match-
ing procedure suggested in [6] or variations of it like
the proportional vector model(Section 3.3), thedif-
ference vector model(Section 3.8), or theALV model
(Section 3.8) correctly predict the search behavior of
ants in modified landmark setups. For this purpose,
also the influence of the apparent height of the land-
marks has to be considered, which has been neglected
in our computer simulations and robot experiments up
to now.

While it is difficult to compare the precision of the
path-integration system of robot and ants (see Section
2.8), it is legitimate to compare the precision of the
visual homing methods, since the visual processing is
not affected by differences in size or propulsion. The
precision achieved in the robot experiments — with the
given threshold, the final distance to the snapshot loca-
tion ranged between 7 and 20 cm (see Section 3.7) —
is in a range where an ant should be able to see or
smell the nest entrance. Demonstrating that this pre-
cision can be achieved in real-world experiments pro-
vides strong support for the snapshot thesis and the
specific matching procedure.

The setups used in the robot experiments consisted
of 2–4 landmarks. Computer simulations revealed that
despite the parsimony of all models (and especially of
theALV model) even complex landmark situations can
be mastered. Fig. 22 shows how three of the models
(original snapshot model, PV model, andALV model)
perform in a complex environment with 27 landmarks
of different sizes. All models perform surprisingly
well, generating trajectories that end at the target po-
sition. The expectation was that because of the large
number of landmarks many false matches would occur
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Fig. 22. The performance of the homing models in a complex environment with 27 landmarks. Left:Snapshot model. Center:PV model.
Right: ALV model.

that cause local attractor points. Moreover, landmarks
cover each other or fuse to larger landmarks from the
perspective of the agent. Apparently, the home vectors
produced by the models overall point to the target po-
sition, although differences in the trajectories are ap-
parent. A detailed analysis of the differences between
the behavior of the models would require an exami-
nation of a huge number of possible variations of the
matching process which is beyond the scope of this pa-
per. Note that under certain conditions some of these
models exhibit an inherent obstacle-avoidance behav-
ior without a dedicated obstacle-avoidance module.

4. Summary and conclusions

In the work presented here, we use an autonomous
agent to study the navigation capabilities of in-
sects, in particular of desert ants. We have de-
veloped a robot equipped with polarization vision
and with a panoramic, 360◦ visual system. Three
types of visual sensors employed on the robot —
polarization-opponent units, ambient-light sensors,
and a panoramic camera system — correspond to dif-
ferent parts and functions of the insect eye. The robot
was used to investigate the path-integration capabili-
ties of insects which are based on the polarized-light
pattern of the sky and to test models of visual land-
mark navigation.

Sensors and early processing stages of the
polarization-vision system of insects were reproduced
in a polarized-light compass (POL-compass). We
have analytically derived asimultaneousmodel for
extracting compass information directly from the sig-

nals of the polarization-opponent units forming the
POL-compass. In order to evaluate the precision of
the POL-compass, a path-integration system employ-
ing a POL-compass was compared with a system that
used proprioception only. Especially for long-range
navigation, the POL-compass system proved supe-
rior to the proprioceptive system. These results are
discussed in Section 2.8.

The robot was also used to test thesnapshot model
of visual landmark navigation. According to this
model, an insect records a panoramicsnapshotimage
of the surroundings at the target position. When it has
to return to this location, it compares this snapshot
with its current retinal image in order to determine a
home vector. The high precision achieved in visual
homing experiments with the robot demonstrates that
the strategies assumed to underlie insect navigation
actually work in a real-world environment. More-
over, these parsimonious strategies can also provide a
guideline for robotics research. Particularly attractive
for robotics applications is the novel, computationally
cheap visual-homing method, theAverage Landmark
Vector model, which was developed in the course of
this study. Section 3.9 provides a discussion of the
results.

A fusion of the two navigation methods in a
two-phase strategy — path-integration for long dis-
tances, visual homing in the vicinity of the target
location — should be possible with small effort:
As soon as the home vector obtained from the
path-integration system is reduced to zero length, nav-
igation switches to visual homing. As demonstrated,
the path-integration system that derives orientation
from the POL-compass guides the robot back to
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the vicinity of the starting location with a precision
of better than 1 m even after excursions of several
hundred meters length. Visual piloting, on the other
hand, has been shown to work in a range of up to 4 m
with the given landmark setup, camera resolution,
and image processing steps. The overlap of the two
working ranges is indicating that a two-phase strategy
can be successful. Recently, new experimental results
concerning the interplay of path integration and land-
mark navigation have been presented [11]. Moreover,
extensions of the visual homing method may increase
its working range. The use of multiple snapshots was
suggested in [7] and currently received support from
ant experiments [24].

This case study illustrates the power of biorobotics
that arises from the close relationship between engi-
neering and biology: On the one hand, insights for in-
novative engineering designs can be found by analyz-
ing the mechanisms employed by biological agents.
On the other hand, biological hypotheses can be con-
firmed using real-world artifacts rather than simula-
tions only, and new biological hypotheses and ideas
for new animal experiments can be generated. Future
work will concentrate on adapting the parsimonious
strategies of insects for landmark navigation in indoor
environments.

Acknowledgements

This work is supported by the Swiss National
Science Foundation (grants 20-47257.96 and 2000-
053915.98 to R. Pfeifer and 31-43317.95 to R.
Wehner), the Swiss Federal Office for Education
and Science (VIRGO TMR network), and the Hu-
man Frontier Science Program. TheSahabot 2was
constructed in cooperation with Rosys AG, Hom-
brechtikon. Financial support by Rosys AG is kindly
acknowledged. The authors thank Christian Gfeller
(Rosys) for the fruitful cooperation. Many thanks
to Marinus Maris and Hiroshi Kobayashi for their
contributions in the construction of the robot.

References

[1] B. Barshan, H.F. Durrant-Whyte, Orientation estimate for
mobile robots using gyroscopic information, in: Proceedings
of the International Conference on Intelligent Robots and
Systems (IROS 94), 1994, pp. 1867–1874.

[2] B. Barshan, H.F. Durrant-Whyte, Inertial navigation systems
for mobile robots, Transactions on Robotics and Automation
11 (1995) 328–342.

[3] S.L. Bartlett, A. Hampapur, M.J. Huber, D. Kortenkamp, S.
Moezzi, Vision for mobile robots, in: J. Sanz (Ed.), Advances
in Image Processing and Machine Vision, Springer, Berlin,
1995, pp. 1–117.

[4] G.D. Bernard, R. Wehner, Functional similarities between
polarization vision and color vision, Vision Research 17
(1977) 1019–1028.

[5] J. Borenstein, H.R. Everett, L. Feng, “Where am I?” Sensors
and methods for mobile robot positioning, Technical Report,
University of Michigan, 1996.

[6] B.A. Cartwright, T.S. Collett, Landmark learning in bees,
Journal of Comparative Physiology 151 (1983) 521–543.

[7] B.A. Cartwright, T.S. Collett, Landmark maps for honeybees,
Biological Cybernetics 57 (1987) 85–93.

[8] R. Cassinis, D. Grana, A. Rizzi, Using colour information in
an omnidirectional perception system for autonomous robot
localization, in: Proceedings of the First Euromicro Workshop
on Advanced Mobile Robots (EUROBOT ’96), Los Alamitos,
CA, 9–11 October 1996, IEEE Computer Society Press, Silver
Spring, MD, 1996.

[9] J.S. Chahl, M.V. Srinivasan, Visual computation of
egomotion using an image interpolation technique, Biological
Cybernetics 74 (1996) 405–411.

[10] J.S. Chahl, M.V. Srinivasan, Reflective surfaces for panoramic
imaging, Applied Optics 36 (31) (1997) 8275–8285.

[11] M. Collett, T.S. Collett, S. Bisch, R. Wehner, Local and global
vectors in desert ant navigation, Nature 394 (1998) 269–272.

[12] T.S. Collett, J. Baron, Biological compasses and the
coordinate frame of landmark memories in honeybees, Nature
368 (1994) 137–140.

[13] T. Consi, J. Atema, J. Cho, C. Chryssostomidis, AUV
guidance with chemical signals, in: Proceedings of the IEEE
Symposium on Autonomous Underwater Vehicle Technology,
Cambridge, MA, 19–20 July 1994, pp. 3–9.

[14] H. Cruse, Ch. Bartling, G. Cymbalyuk, J. Dean, M. Dreifert,
A modular artificial neural net for controlling a six-legged
walking system, Biological Cybernetics 72 (1995) 421–430.

[15] H. Cruse, Ch. Bartling, J. Dean, T. Kindermann, J. Schmitz,
M. Schumm, H. Wagner, Coordination in a six-legged
walking system. Simple solutions to complex problems by
exploitation of physical properties, in: Proceedings of the
Fourth International Conference on Simulation of Adaptive
Behavior, From Animals to Animats (SAB96), Cape Cod,
MA, 1996, pp. 84–93.

[16] F.C. Dyer, J.A. Dickinson, Development of sun compensation
by honey bees: How partially experienced bees estimate
the sun’s course, Proceedings of the National Academy of
Science, USA 91 (1994) 4471–4474.

[17] N. Franceschini, J.M. Pichon, C. Blanes, From insect vision to
robot vision, Philosophical Transactions of the Royal Society
of London 337 (1992) 283–294.

[18] M.O. Franz, B. Schölkopf, H.A. Mallot, H.H. Bülthoff,
Learning view graphs for robot navigation, Autonomous
Robots 5 (1998) 111–125.



D. Lambrinos et al. / Robotics and Autonomous Systems 30 (2000) 39–64 63

[19] M.O. Franz, B. Schölkopf, H.A. Mallot, H.H. Bülthoff, Where
did I take that snapshot? Scene-based homing by image
matching, Biological Cybernetics 79 (1998) 191–202.

[20] P. Gaussier, C. Joulain, S. Zrehen, J.P. Banquet, A. Revel,
Visual navigation in an open environment without map, in:
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS-97) 1997, pp. 545–550.

[21] F. Grasso, T. Consi, D. Mountain, J. Atema, Locating
odor sources in turbulence with a lobster inspired robot,
in: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, From Animals to Animats
(SAB96), Cape Cod, MA, 1996, pp. 104–112.

[22] G. Hartmann, R. Wehner, The ant’s path integration system:
A neural architecture, Biological Cybernetics 73 (6) (1995)
483–493.

[23] J. Hong, X. Tan, B. Pinette, R. Weiss, E.M. Riseman,
Image-based homing, IEEE Control Systems (February 1992)
104–112.

[24] S.P.D. Judd, T.S. Collett, Multiple stored views and landmark
guidance in ants, Nature 392 (1998) 710–714.

[25] D. Kortenkamp, Cognitive maps for mobile robots: A
representation for mapping and navigation, PhD thesis, The
University of Michigan, 1993.

[26] B. J. Kuipers, Y. T. Byun, A robust, qualitative method for
robot spatial learning, in: Proceedings of the 7th National
Conference on Artificial Intelligence (AAAI-88), St. Paul,
MN, Morgan Kaufmann, Los Altos, CA, 1988, pp. 774–779.

[27] T. Labhart, Polarization-opponent interneurons in the insect
visual system, Nature 331 (1988) 435–437.

[28] T. Labhart, Unpublished results, 1998.
[29] D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer,

R. Wehner, An autonomous agent navigating with a polarized
light compass, Adaptive Behavior 6 (1) (1997) 131–161.

[30] M. Lindauer, Angeborene und erlernte Komponenten in der
Sonnenorientierung der Bienen, Zeitschrift für vergleichende
Physiologie 42 (1959) 43–62.

[31] H. Lund, B. Webb, J. Hallam, A robot attracted to the cricket
species gryllus bimaculatus, in: Proceedings of the Fourth
European Conference on Artificial Life, 1997, pp. 131–140.

[32] L. Matthies, E. Gat, R. Harrison, Mars microrover navigation:
Performance evaluation and enhancement, Technical Report
95-0096, Jet Propulsion Laboratory, NASA, Pasadena, CA,
1995.

[33] R. Möller, M. Maris, D. Lambrinos, A neural model
of landmark navigation in insects, Neurocomputing 26–27
(1999) 801–808.

[34] M. Müller, R. Wehner, Path integration in desert ants,
Cataglyphis fortis, Proceedings of the National Academy of
Science Neurobiology 85 (1988) 5287–5290.

[35] R.C. Nelson, Visual homing using an associative memory, in:
Proceedings of the Image Understanding Workshop, Morgan
Kaufmann, Palo Alto, CA, May 1989, pp. 245–262.

[36] J. O’Keefe, The hippocampal cognitive map and navigational
strategies, in: J. Paillard (Ed.), Brain and Space, Oxford
University Press, Oxford, 1991, Chapter 16, pp. 273–295.

[37] R. Pfeifer, Building “fungus eaters”: Design principles
of autonomous agents, in: Proceedings of the Fourth

International Conference on Simulation of Adaptive Behavior,
From Animals to Animats (SAB96), Cape Cod, MA, 1996,
pp. 3–12.

[38] M.V. Srinivasan, An image-interpolation technique for the
computation of optic flow and egomotion, Biological
Cybernetics 71 (1994) 401–416.

[39] M.V. Srinivasan, J.S. Chahl, S.W. Zhang, Robot navigation by
visual dead-reckoning: Inspiration from insects, International
Journal of Pattern Recognition and Artificial Intelligence
11 (1) (1997) 35–47.

[40] H. Vitzthum, Der Zentralkomplex der Heuschrecke
Schistocerca gregaria: Ein mögliches Zentrum des
Polarisationssehsystems, PhD thesis, Universität Regensburg,
1997.

[41] B. Webb, Robotic experiments in cricket phonotaxis, in:
Proceedings of the Third International Conference on
Simulation of Adaptive Behavior, From Animals to Animats
3 (SAB94), MIT Press, Cambridge, MA, 1994, pp. 45–54.

[42] B. Webb, Biological orientation systems for mobile robots,
in: Proceedings of the International Conference on Recent
Advances in Mechatronics, 1995.

[43] B. Webb, Using robots to model animals: A cricket test,
Robotics and Autonomous Systems 16 (2–4) (1995) 117–134.

[44] B. Webb, A cricket robot, Scientific American 275 (6) (1996)
94–99.

[45] B. Webb, J. Hallam, How to attract females: Further robotic
experiments in cricket phonotaxis, in: Proceedings of the
Fourth International Conference on Simulation of Adaptive
Behavior, From Animals to Animats 4 (SAB96), Cape Cod,
MA, MIT Press, Cambridge, MA, 1996, pp. 75–83.

[46] R. Wehner, Himmelsnavigation bei Insekten. Neurophysio-
logie und Verhalten, Neujahrbl. Naturforsch. Ges. Zürich 184
(1982) 1–132.

[47] R. Wehner, Spatial organization of foraging behavior in
individually searching desert ants,Cataglyphis(Sahara desert)
and Ocymyrmex (Namib desert), in: J.M. Pasteels, J.L.
Deneubourg (Eds.), From Individual to Collective Behavior
in Social Insects, Birkhäuser, Basel, 1987, pp. 15–42.

[48] R. Wehner, Arthropods, in: F. Papi (Ed.), Animal Homing,
Chapman and Hall Animal Behaviour Series, Chapman and
Hall, London, 1992, Chapter 3, pp. 45–127.

[49] R. Wehner, The polarization-vision project: Championing
organismic biology, in: K. Schildberger, N. Elsner (Eds.),
Neural Basis of Behavioural Adaptations, Gustav Fischer
Verlag, Stuttgart, 1994, pp. 103–143.

[50] R. Wehner, The ant’s celestial compass system: Spectral
and polarization channels, Orientation and Communication in
Arthropods, Birkhäuser, Basel, 1997, pp. 145–185.

[51] R. Wehner, B. Lanfranconi, What do the ants know about the
rotation of the sky?, Nature 293 (1981) 731–773.

[52] R. Wehner, B. Michel, P. Antonsen, Visual navigation in
insects: Coupling of egocentric and geocentric information,
Journal of Experimental Biology 199 (1996) 129–140.

[53] R. Wehner, M. Müller, How do ants acquire their celestial
ephemeris function? Naturwissenschaften 331–333 (1993)
4471–4474.



64 D. Lambrinos et al. / Robotics and Autonomous Systems 30 (2000) 39–64

[54] R. Wehner, F. Räber, Visual spatial memory in desert ants,
Cataglyphis bicolor(Hymenoptera: Formicidae), Experientia
35 (1979) 1569–1571.

[55] R. Wehner, S. Wehner, Path integration in desert ants.
Approaching a long-standing puzzle in insect navigation,
Monitore Zool. Ital. (N.S.) 20 (1986) 309–331.

[56] R. Wehner, S. Wehner, Insect navigation: Use of maps or
Ariadne’s thread? Ethology, Ecology and Evolution 2 (1990)
27–48.

[57] Y. Yagi, M. Yachida, Real-time generation of environment
map and obstacle avoidance using omnidirectional image
sensor with conic mirror, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
May 1991, pp. 160–165.

Dimitrios Lambrinos received a B.S. and
M.S. in Mathematics from the University
of Ioannina, Greece, and an M.S. degree
in Computer Science from the University
of Sheffield. He received his Ph.D. with
distinction in Natural Sciences at the AI
Lab of the University of Zurich where he
is also a Research Associate. His research
interests include robot navigation, visually
guide behavior and learning. He is cur-

rently studying biological models for insect navigation by using
robots.

Ralf Möller studied Electrical Engineer-
ing and Computer Science and gained his
Ph.D. in Engineering from the Technical
University of Ilmenau, Germany, in 1996.
He is currently a Postdoctoral Researcher
at the AI Lab, Department of Computer
Science, and at the Department of Zool-
ogy, University of Zurich. His research
interests include visual robot navigation,
biomimetic robots, neuromorphic systems,
neuroinformatics, and parallel computa-
tion.

Thomas Labhart is a Lecturer at the In-
stitute of Zoology of the University of
Zurich. He has gained his Ph.D. in the
Natural Sciences from the University of
Zurich with a behavioral study on bee vi-
sion. During his two postdoctoral years at
different universities in the USA, including
CalTech and Yale he studied the electro-
physiology of arthropoed visual systems.
Working on the electrophysiological, his-

tological and synthetic level his present research focuses on the
neural mechanisms underlying the polarized-light compass of in-
sects.

Rolf Pfeifer received his degree in Physics
and Mathematics from the Swiss Federal
Institute of Technology (ETH) in Zurich,
Switzerland. After a number of years in the
computer industry as a systems engineer,
he worked at the Psychology Department
of the University of Zurich in the area
of simulation of cognitive processes. After
his Ph.D. in Computer Science (ETH) he
spent three years in the USA as a postdoc

at Carnegic-Mellon University and Yale University in the areas
of artificial intelligence and cognitive science. Since 1987 he has
been a Professor of Computer Science at the University of Zurich.
In 1990/91 he held the SWIFT AI Chair at the Free University
of Brussels. He is Head of the Artificial Intelligence Laboratory
at the Computer Science Department of the University of Zurich
which has a strong focus on interdisciplinary research projects.

Rüdiger Wehner is Professor of Neuro-
biology and Behavior and Head of the
Institute of Zoology of the University of
Zurich, Switzerland. He obtained his Ph.D.
at the University of Frankfurt, Germany,
and did his postdoctoral research at both
the University of Zurich and Yale Uni-
versity. He was A.D. White Professor at
Cornell University, A. Forbes Professor at
MBL, Woods Hole, Massachusetts, and re-

ceived several named lectureships in the United States and Great
Britain. He is permanent fellow of the Institute for Advanced Study
in Berlin and foreign member of the American Philosophical Soci-
ety. His research focuses on the neurobiology of insect navigation,
especially on navigation in Saharan desert ants,Cataglyphis.


