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Summary
Transplantation experiments have shown that develop-
ing metazoan organs carry intrinsic information about
their size and shape. Organ and body size are also
sensitive to extrinsic cues provided by the environment,
such as the availability of nutrients. The genetic and
molecular pathways that contribute to animal size and
shape are numerous, yet how they cooperate to control
growth is mysterious. The recent identification and
characterization of several mutations affecting growth
in Drosophila melanogaster promises to provide in-
sights. Many of these mutations affect the extrinsic
control of animal size; others affect the organ-intrinsic
control of pattern and size. In this review, we summarize
the characteristics of some of these mutations and their
roles in growth and size control. In addition, we speculate
about possible connections between the extrinsic and
intrinsic pathways controlling growth and pattern.
BioEssays 24:54±64, 2002.
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Introduction

The mechanisms that determine the shape of organs have

long interested developmental biologists. This interest has led

to the identification of ``patterning'' signal transduction path-

ways, such as those controlled by the secreted proteins

Wingless/Wnt, Dpp/BMP/TGF-b, and Hedgehog. Until re-

cently, however, little attention has been directed at the

mechanisms that guarantee the correct size of an organ. This

review focuses on recent advances in our understanding of the

mechanisms that control growth and organ size in Drosophila.

We will describe genes that are involved in two different

aspects of growth. The first class controls the synthesis of

proteins and other metabolic processes: these genes affect

both the rate of growth and the final size of the organ. Many of

these genes respond to environmental cues such as nutrient

availability and temperature, which we will refer to as

``extrinsic'' signals. The second class of genes determines

the identity, pattern, structure, and final size of imaginal discs,

the organs that give rise to the appendages of the adult fly; the

effects of these genes on growth rates are less clear. We

discuss disc intrinsic signals including Wingless and Dpp, as

well as the regulation derived from communication between

neighboring cells within the disc epithelium.

Growth is an increase in mass over time, and the term can

describe mass increases of individual cells (``cell growth'') as

well as tissues, organs, or entire animals (``growth''). Growth is

normally accompanied by an increase in cell number. We limit

our discussion in this review to the regulation of cell growth, its

coordination with the cell cycle, and the resulting overall organ

and animal growth. Not discussed here are processes such as

cell death that also contribute to determining the final size of

an organ.(1)

During the growth of most organs, rates of cell growth and

cell division are coordinated so that cell size does not change

much over time. The mechanisms that match rates of cell

growth with cell division are mysterious, and are only recently

being addressed in metazoans. In the developing Drosophila

wing disc, growth can be uncoupled from cell division. For

example, when cell division is slowed or blocked, cells

continue to accumulate mass (cell growth), and hence

increase in size. Conversely, when cell division rates are

accelerated by overexpression of specific cell-cycle regula-

tors, cell growth rates are unaffected and the cells divide at a

smaller size.(2) These observations demonstrate that, in meta-

zoans, as in the unicellular yeast,(3,4) cell division rates do not

drive growth. It is unclear whether the converse is true and cell

growth is sufficient to drive cell division.(2,5)

What determines the rate of cellular growth? Clearly, the

identity of a particular organ, the position of a cell within this

organ and its interactions with neighboring cells all play

important roles in determining growth rates. Although different

models have been put forward to explain this local, organ-

intrinsic control of growth, its molecular basis has remained

elusive.(6±8) In addition to local control, cells also experience
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more global signals that control their growth rates.(7) Tempera-

ture and nutrient availability, for example, strongly influence

growth rates and can affect the final size of many animals.

Much of the recent work on growth has been carried out

using the wing and eye imaginal disc cells of Drosophila larvae.

Disccellsaresubject tosimilar cell-cycleandgrowth regulatory

controls as mammalian cells, and all of the genes discussed in

this review have mammalian homologs. The disc is a simple

epithelium made up of a single sheet of cells, which takes on

characteristic folds as it grows in size. During larval develop-

ment wing discs grow from about 50 to 50,000 cells in 4 days,

and this growth is tightly linked to the acquisition of cell fates.

Below, we discuss several genes that apparently cooperate to

control the growth of imaginal discs.

Control of growth rate and organ size

Insulin receptor signaling
The synthesis of new proteins is at the heart of animal growth

during development. In flies, mutations in components of the

translation machinery have long been known to reduce the rate

of growth. Prominent examples are mutations in genes

encoding ribosomal proteins (collectively known as Minute

mutations) and ribosomal RNA (e.g., the miniature and the

bobbed mutations; reviewed in Ref. 9). Additional genes

involved in protein synthesis have been identified through a

recent genetic screen for growth-defective mutants, including

the translation factor eIF4A.(10) Hence, the protein translation

apparatus constitutes a critical target for the pathways that

control growth rate. Amongst these, the insulin receptor (Inr)

signaling pathway has emerged in recent years as the major

regulator of growth in Drosophila. Whereas vertebrates

contain two related receptors (insulin receptor and insulin-like

growth factor receptor-1; reviewed in Ref. 11), Drosophila has

only one insulin-receptor (dInr).

Upon binding to a ligand, dInr activates an evolutionarily

conserved signal transduction cascade. Intracellular transdu-

cers of this cascade include the adaptor protein ``insulin-

receptor substrate'' (IRS/chico), the lipid kinase dp110, and

the protein serine/threonine kinases PDK1 and Dakt (for a

detailed discussion of the molecular functions of these

proteins and of their interactions the reader is referred to the

article by Kozma & Thomas [this issue of BioEssays]).

Together with the pathway acting through dTOR and the

ribosomal protein S6 kinase (dS6K), the dInr pathway controls

the activity of the protein translation machinery. Mutations in

any of the components listed above result in a reduction of the

cellular and organismal growth rate. Similarly, overexpression

of inhibitory components of the dInr pathway (the lipid

phosphatase dPTEN and the inhibitor of the cap binding

protein, 4E-BP) slows growth rates.

Signaling via Inr and IGF-1R in vertebrates is initiated by

the binding of insulin and two insulin-like growth factors (IGF-1

and IGF-2), respectively. Until recently, no protein corre-

sponding to IGFs or insulin was known in Drosophila. By

searching the Drosophila genome database, Brogiolo and

colleagues identified seven genes they named Drosophila

insulin-like peptide (DILP) genes.(12) Based on the predicted

amino acid sequences and protein domain structures, the

DILPs are more closely related to vertebrate insulin than to

IGF-1 or IGF-2. So far, no direct binding to dInr has been

demonstrated for any of the DILPs; however, one appears to

play an important role in growth control. Ubiquitous expression

of DILP2 under the control of the hsp70 promoter leads to a

significant increase in body mass.(12) Furthermore, DILP2

shows a strong genetic interaction with both dInr and Dakt:(12)

the embryonic lethality caused by ubiquitous overexpression

of DILP2 is suppressed by either heterozygosity for dInr, or by

heteroallelic combinations of Dakt. Conversely, the increase in

growth caused by overexpression of dInr in the developing eye

is dominantly suppressed by a deficiency that removes DILP2.

Although this deficiency also uncovers DILP1, DILP3, DILP4

and DILP5 as well as other genes, the importance of DILP2 for

this suppression is demonstrated by the observation that

reintroduction of DILP2 into this genetic background reverses

the suppressive effect of the deficiency.

Taken together, these data suggest that the DILPs cons-

titute physiological ligands for dInr. A hormonal function for at

least some of the DILPs is further suggested by their pattern of

expression during late larval stages. DILP2, DILP3 and DILP5

were found to be expressed in two (bilaterally symmetrical)

groups of 7 cells in the brain hemispheres. These cells project

into the ring gland, the compound endocrine gland of

Drosophila,(13) from which the DILPs could be secreted into

the hemolymph. A more detailed characterization of these

cells and of the DILP translation products will be required to

further validate this hypothesis. An equally important chal-

lenge will be the identification of the signals that regulate DILP

levels. The observation that mutations in several dInr-pathway

components phenocopy the effects of starvation supports the

idea that nutritional status plays an important role in the control

of dInr signaling and, by inference, DILP levels (e.g., Refs.

12,14,15). In this context, it is also intriguing that the levels of

bombyxins, the insulins of the silk moth Bombyx mori, are

controlled by blood glucose levels.(16) With the molecular

identification of the DILPs, these upstream signals can now be

experimentally addressed.

In addition to the DILPs, five factors have been isolated that

are able to cooperate with human insulin in promoting the

proliferation of cultured Drosophila S2 cells.(17) These factors

were termed imaginal-disc derived growth factors (IDGFs) for

their tissue of origin. IDGFs are related in primary amino acid

sequence to chitinases, enzymes that hydrolyze chitin

polymers. Since they do not contain a certain conserved

amino acid in the active site, however, IDGFs are likely to be

enzymatically inactive.(17) IDGFs are expressed in several
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tissues in addition to imaginal discs, most notably the fat body,

which was previously shown to emit a diffusible growth signal in

response to nutrient status.(18) It is tempting to speculate that

the IDGFs might take part in nutritional signaling. Future work is

needed to address this possibility and establish the molecular

details of an interaction with dInr signaling in vivo.

Other genes controlling growth
In addition to components of the basic translation machinery

and the dInr pathway, several other genes, previously thought

to act as regulators of the cell cycle, have recently been shown

to control growth.

dMyc. dmyc encodes the single Drosophila homolog of the

Myc family of proto-oncogenes.(19) These proteins are

transcription factors of the BHLHZ family (basic, helix-loop-

helix, leucine zipper), and they have long been known to

promote cell-cycle progression and apoptosis, as well as

cellular transformation.(20) Recent studies in Drosophila point

to an additional role for Myc in the control of cellular and

organismal growth. While a null mutation in dmyc is lethal,

viable hypomorphic mutants have been isolated that show

phenotypes similar to those described for dInr pathway

components, including a reduction in cell size and number,

resulting in smaller adult flies.(21) Conversely, ectopic expres-

sion of dMyc promotes growth, and exponentially proliferating

imaginal disc cells overexpressing dMyc reach nearly twice

the size of control cells. At the same time, dMyc expression

also shortens G1 phase of the cell cycle by inducing Cyclin E,

the limiting regulator of the G1/S transition in discs.(21,22)

Interestingly, the overall doubling time of these cells is

unchanged due to a compensatory lengthening of G2.(21) Co-

expression of dMyc with the protein phosphatase String (Stg)/

Cdc25, rate limitor for entry into mitosis,(2) readjusted the cell-

cycle profile and prevented the lengthening of G2 phase, but

not the increase in growth.(21) These experiments demon-

strated that dMyc's role in the fly is primarily as regulator of cell

growth, and that dMyc's effects on cell-cycle progression may

be secondary to its acceleration of the cellular growth rate.

Subsequent studies in vertebrate systems indicated that

c-Myc also increases cellular growth rates.(23,24)

A molecular explanation for the effect of dMyc on growth is

likely to require the characterization of its transcriptional

targets.(20) So far, only one such target has been found in

Drosophila, pitchoune (pit, Ref. 25). pit codes for a nucleolar

DEAD-box RNA helicase, and it has been suggested that Pit is

involved in ribosome biogenesis.(25) pit mutant flies arrest

growth during larval development, although they survive

for extended periods of time, indicating that Pit might be

an important mediator of growth downstream of dMyc. In

contrast, more than hundred Myc targets have been identified

in vertebrates (see for example Refs. 20,26,27). Many of these

correspond to components of the translation machinery, e.g.,

eIF4E and genes coding for ribosomal proteins (e.g. Refs.

20,26,27).

Ras. While signaling through Ras plays an important role in

many different contexts during development (reviewed in Ref.

28), recently a direct role for Ras in controlling cellular growth

was also suggested.(22) Overexpression of activated Ras

(dRasV12) in clones of proliferating cells resulted in similar

phenotypes as overexpression of dMyc. Indeed, dMyc protein

(but not mRNA) levels were elevated in these clones,

suggesting that the growth effect of Ras might be mediated

by post-transcriptional regulation of dMyc.(22) A possible

mechanism is suggested by recent reports that, in vertebrate

tissue culture cells, Ras induces phosphorylation of c-Myc on

serine 62 which in turn increases the stability of c-Myc protein

by several-fold.(29,30)

Cyclin D/cdk4. Complexes between the regulatory subunit

Cyclin D and the kinase Cdk4 (or Cdk6) are important cell-

cycle regulators in vertebrates, and also involved in regulating

growth. In the absence of this complex, cells are impaired

in their progression through the cell cycle. Mice lacking

either D-type cyclin or Cdk4 are viable but reduced in

size. Biochemical and molecular studies have focused on

pRB, a tumor suppressor and negative regulator of the cell

cycle, as the major regulatory target of the Cyclin D/Cdk4

complex.(31)

Homologs for all these genes have been found in

Drosophila. In contrast to vertebrates, however, flies contain

only one D-type cyclin(32) and one associated kinase subunit

(called Cdk4, Ref. 33). While no mutations have been

described yet for cyclin D, a null mutation in cdk4 was recently

characterized.(34) Similar to mice, flies lacking Cdk4 are viable

but reduced in size, due to a decrease in cell number. These

defects can be partly rescued by reducing the dose of rbf (a

Drosophila RB homolog; Ref. 35). Conversely, over-expres-

sion of Cyclin D together with Cdk4 coordinately accelerates

the rates of cell-cycle progression and cell growth, resulting in

more cells that retain their normal size.(36) When Cyclin D and

Cdk4 were co-expressed in postmitotic cells in the eye disc,

cell size was significantly increased.(36) Together, these

experiments suggest that Cyclin D/Cdk4 complexes are true

growth promoters: they stimulate both cellular growth and cell-

cycle progression coordinately. In this respect, they differ from

factors, such as dMyc, components of the dInr pathway and

activated Ras, that promote growth without altering cell-cycle

rates when overexpressed.

TSC1 and TSC2. Vertebrate TSC1 and TSC2 were initially

identified as the two loci most frequently mutated in heritable

forms of ``tuberous sclerosis complex'' (TSC), a disease

characterized by tumorous growths called hamartomas.(37,38)

The Drosophila homologs of the proteins encoded by these

two genes, TSC1 and TSC2 (also known as Gigas), were

identified by virtue of their sequence and their mutant
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phenotype.(39±41) Proliferating and differentiating cells lacking

either TSC1 or TSC2 are substantially larger than control

cells, and progression through the cell cycle is significantly

accelerated (in particular passage through G1 phase). Lack of

TSC1 in post-mitotic cells of the eye disc induces ectopic S-

phases and mitoses, presumably caused by an increase in the

levels of Cyclin E and Cyclin A.(40,41) Co-overexpression of

TSC1 and TSC2 strongly inhibits growth and extends G1 and,

to a lesser extent, G2 phase of the cell cycle. These results

demonstrate a clear role for TSC1 and TSC2 in the regulation

of growth and cell-cycle progression.

How do TSC1 and TSC2 fit in with other pathways

controlling growth, in particular dInr signaling? Genetic

epistasis experiments carried out by Potter, Tapon, and their

colleagues(40,41) place TSC1/2 either in the dInr pathway

between Dakt and dS6K, or in a parallel pathway that

converges with dInr signaling to control growth (possibly at

the level of dS6K). While the molecular mechanism for such an

interaction between TSC1/2 and the dInr pathway is currently

unknown, both human and Drosophila TSC2 contain putative

phosphorylation sites for Akt (PG, unpublished observation;

Ref. 42). It will be interesting to determine whether TSC2 is

phosphorylated on this site in vivo, and what the conse-

quences of this phosphorylation might be. In addition, TSC1/2

also interact genetically with dmyc, cyclin D/ cdk4, and ras.(41)

Together, these results provide an intriguing basis for ad-

ditional experiments to address the molecular function of

TSC1/2 in the control of growth.

Disc intrinsic control of growth and size:

pattern organizers and cell±cell

communication

While the dInr pathway controls how signals from outside the

animal andoutside the disc influence growth, the coordinationof

cell proliferation within imaginal discs is mediated by local

signals that control cell±cell interactions.(43) Although all adult

wings look essentially the same, cell lineages in discs are not

fixed, and patterns of cell proliferation during wing development

vary from disc to disc. Small clusters of cells within the disc,

unrelated by clonal origin, progress through the cell cycle

together, so that at any given time several neighboring cells will

be in S phase, or in G2.(44) Although they progress through

S phase together, they may not all go through G2 at the

same rate: some cells will drop out of the cluster, while other

nearby cells will enter it. This sort of disc-intrinsic lineage

plasticity must be controlled via communication between

neighboring cells, but the actual mechanisms at work are

unclear. Below, we discuss different modes of disc-intrinsic

growth regulation.

The influence of pattern organizers on growth
The organization of pattern in imaginal discs requires the

activity of the signaling pathways activated by Wg, Dpp,

Hedgehog, Notch, and EGF. Genetic analysis has demon-

strated that most of these pathways influence growth, yet

surprisingly little is known about how they do this. We restrict

our discussion here to Wg and Dpp, since they are the primary

pattern organizers of the wing itself. Wg and Dpp are

expressed in two perpendicular stripes of cells in wing imaginal

discs (Fig. 1). Both molecules act as secreted morphogens

that form perpendicular, intersecting gradients across the disc.

These gradients are critical for the instruction of cells about

their location within the disc and the fate that each acquires.

Thus, cells close to Wg or Dpp receive different information

than cells that are farther away.(45±48)

Genetic manipulation of the Wg and Dpp pathways has

revealed a tight link between their role in disc patterning and

their role in its growth. In the wing disc, Wg and Dpp are both

required for cells to form the wing pouch, the portion of the wing

disc that forms the adult wing blade. Mutations in either

pathway prevent cell proliferation within this region.(49,50) In

mosaic wing discs, cells within the wing pouch that are mutant

for the Dpp receptor, tkv, do not proliferate, although their

neighboring, phenotypically wild-type cells proliferate nor-

mally.(50) When a Minute mutation is used to impair protein

synthesis and growth rate specifically in the surrounding cells,

however, tkv mutant cells are able to proliferate and form a

clone. This behavior of tkv mutant cells indicates that they are

unable to compete with wild-type cells for growth and survival

factors (a phenomenon known as ``cell competition''). Other

mutants known to suffer from cell competition are defective in

their growth pathways (such as components of the dInr

pathway), suggesting that one role of Dpp signaling is to

promote cellular growth.

Cells in the wing pouch with mutations that eliminate Wg

signaling are unable to proliferate even when given a growth

advantage.(49) However, if their death is prevented by

expression of the Baculovirus caspase inhibitor, P35,(51) cells

unable to transduce the Wg signal can proliferate, and in fact

do so at a faster rate than wild-type cells (LJ, unpublished).

This observation implies that Wg is necessary for cell survival,

but not to promote cell growth and proliferation. Instead,

overactivation of Wg signaling in the wing pouch leads to a

slowing of cell division and growth (LJ, unpublished; Ref. 52),

suggesting that, under normal circumstances, Wg activity is

required to constrain growth rates.(52)

Activation of the Wg or Dpp pathways in cells that do not

normally receive high levels of the signals can cause tremen-

dous overgrowth.(53±56) Cells in these overgrowths proliferate

faster than in the wild type. The overgrowth also delays

development, which is probably due to a reprogramming of

cell identities. Interestingly, the cells retain their normal size

even though they are dividing at an increased rate (LJ & C.

Martin-Castellanos, unpublished). Thus, even during aberrant

overgrowth, rates of cell growth and cell division are tightly

coupled.
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Cell±cell communication and growth control
Imaginal discs are able to coordinate events between

neighboring cells (such as a partial synchronization of cell-

cycle phase) in part because the disc epithelium is a single

layer of cells with defined apical and basal sides. This

polarized architecture allows cells to share information by

connecting neighboring cells with organized multiprotein struc-

tures such as adherens junctions, septate junctions, and gap

junctions. The junctions provide the tools for anchoring the

actin cytoskeleton of one cell to another, coordinating signaling

between neighboring cells, and for clustering receptors and

their ligands into signaling foci within the plasma mem-

brane.(57) Connections between neighboring cells are critical

for the maintenance of a functional epithelium such as the disc,

but also need to be flexible to accommodate cell division, and

folding of the disc as it grows.

Several Drosophila genes are classified as tumor suppres-

sors since they cause overgrowth of certain tissues when

mutated. In many of the mutants, imaginal discs are hugely

overgrown with disorganized folding patterns (for a com-

prehensive list of these genes, see Ref. 58). Many of the

tumor suppressor and the related overgrowth genes en-

code components of adherens and septate junctions (Fig. 1),

thus linking control of growth with the structural integrity

of the cell. Below, we discuss new information about a few

of these genes, along with some possible links between

their gene products and the machinery that controls cell

proliferation.

Neoplastic mutants are required for epithelial
integrity
Tumor suppressor mutants have been divided into two groups

based on their overgrowth characteristics.(59) In the ``neoplas-

tic'' class, cells lose their apical±basalpolarity and the imaginal

discs form a disorganized mass. In the ``hyperplastic'' class,

epithelial cells retain their polarized structure and continue to

grow as a single layer of cells, but discs dramatically overgrow

and generate many additional folds.

Research within the last few years has revealed that three

of the neoplastic tumor suppressor genes function together to

establish and maintain the architecture of an epithelial cell.

lethal giant larvae (lgl), discs large (dlg), and scribbled (scrib)

Figure 1. Scheme of a wing imaginal disc. Top: front
(left) and side (right) views of the wing disc. The center

of the disc (grey) is the wing pouch, which gives rise to

the blade of the adult fly. Imaginal discs are divided into

developmental compartments, shown here by the blue
line (separating anterior cells from posterior cells), which

also corresponds to the zone of Dpp expression, and the

green line (separating dorsal from ventral cells), where
Wingless is expressed. The disc is made up of a single

sheet of columnar epithelial cells, seen in the side view,

and takes on a series of characteristic folds as it grows in

size. Bottom: structure of two cells, showing their
apical±basal polarity. AJ, adherens junction;. SJ, sep-

tate junction; Green circles, cell nuclei.
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eachencodecomponentsof thebasal-laterally locatedseptate

junctions and, as a large complex, they are required to

organize the apical±basal axis of epithelial cells. Individually,

lgl, dlg, and scrib mutants each show characteristics of

human neoplasms: loss of epithelial integrity, low adhesive-

ness, hyperproliferation and invasiveness (reviewed in

Ref. 58).

The proteins encoded by these three tumor suppressor

genes are large and structurally complex. Lgl (also called

p127) is a large cytoplasmic protein that concentrates at the

basal-lateral plasma membrane near septate junctions, and

associates with the actin cytoskeleton. Dlg, enriched in septate

junctions and in neuromuscular junctions, contains several

protein±protein interaction domains: PDZ (PSD95-Dlg-ZO1)

and SH3 domains, a HOOK domain required for plasma

membrane localization, and a guanylate kinase domain, which

can bind GMP but appears not to function as a guanylate

kinase.(60) Dlg is a member of the MAGUK (membrane

associated guanylate kinase) family of proteins, which bind

to a variety of cellular proteins involved in cell signaling, and

serve as scaffolds for signaling complexes within diverse cell

types.(61,62) Scrib, another sizeable protein, has leucine-rich

repeats (LRR) and PDZ domains of the type found in Dlg; like

Dlg, Scrib is concentrated in septate junctions.(63)

Lgl, Dlg and Scrib thus are all located at the basal-lateral

plasma membrane, and depend on each other for this position:

in mutants of any one of the three, the localization of the other

two proteins is disrupted.(64) Furthermore, all three proteins

are required for the formation of the apically located adherens

junctions. Interestingly, this activity occurs from a distance.

Through their multiple interaction domains, Lgl, Dlg and Scrib

appear to assemble the apical±basal axis by forming a

platform on which proteins are positioned at appropriate sites

in the plasma membrane. In the absence of Lgl, Dlg or Scrib,

the adherens junctions as well as the epithelial character of the

cell is lost. The importance of junctional integrity in growth

control is strikingly demonstrated in scrib mutants, where discs

are severely disorganized and contain about five times more

cells than normal.(63)

Dlg and Lgl interact with proteins that
control the cell cycle
Just how the apical±basal polarity of epithelial cells exerts an

effect on growth is not obvious. However, recent work in

several different systems has provided links between Dlg and

other tumor suppressors, and with cell-cycle regulation. The

PDZ domains of both Dlg and Scrib are predicted to bind the

tripeptide sequence S/TXV present in carboxy-terminal re-

gions of many cellular proteins, including the tumor suppres-

sors adenomatous polyposis coli (APC) and PTEN,

and Protein 4.1 family members.(64±66) The human Dlg

homolog, hDlg, co-localizes with APC in basal-lateral plasma

membranes of both neuronal and colon epithelial cells, and

through its second PDZ domain binds APC in vitro.(65) This

latter interaction is potentially revealing because in mamma-

lian cell culture APC negatively regulates progression through

G1 into S phase of the cell cycle, possibly by inhibiting the

activity of Cyclin E/Cdk2.(67) Moreover, over-expression of

hDlg in NIH 3T3 cells blocks the G1±S phase transition,

whereas mutants of APC that lack the hDlg-binding motif fail to

do so.(68)

Does Dlg associate with APC to regulate cell division in

flies? When overexpressed in wing discs, Dlg blocks cell

proliferation and causes tissue loss,(60) although whether APC

is involved is not clear. Drosophila has two APC genes, dAPC

and E-APC (for epithelial-enriched APC, also known as

dAPC2) but neither contains the tripeptide Dlg-binding

motif.(69,70) Nevertheless, E-APC was recently identified as a

component of adherens junctions of epithelial cells of the

brain, and shown to be required for symmetrical division of

those cells.(71) In epithelial cells, the orientation of the mitotic

spindle is independent of apical±basal cell polarity and cells

divide along a planar axis. In contrast, neuroblasts divide

asymmetrically because their spindles are tightly linked to

asymmetrically located proteins such as Numb and Prospero.

Blocking E-APC function in the brain epithelial cells with RNAi

resulted in connection of the mitotic spindle with the apical±

basal axis, causing asymmetric cell division.(71) Thus,

although as yet there is no direct link between Dlg and E-

APC in control of growth, E-APC is required for an important

aspect of epithelial cell division.

Recently, scrib and dlg mutants were identified as dominant

suppressors of a hypomorphic cyclin E mutant phenotype. In

this mutant, eyes take on a rough appearance due to fewer S

phases during development.(72) Having the dosage of scrib or

dig increases the number of S phase cells in the cyclin E

mutant eye discs to nearly normal. (H. Richardson, personal

communication). Although preliminary, these observations

suggest that both Scrib and Dlg control cell proliferation via an

interaction with Cyclin E. Since Scrib contains PDZ domains

that recognize S/TXV, it is possible that like Dlg, Scrib interacts

with APC. Together, these observations raise the possibility

that APC, Dlg and Scrib function together in a complex to

negatively regulate Gl/S transition, and provide a rudimentary

mechanism for how all three function as tumor suppressors.

Another link between epithelial cell structure and cell

division comes from the demonstration that Lgl also binds to

NAP 1, a protein that, in Drosophila, is linked to cytoskeletal

and mitotic spindle dynamics.(73) NAP 1 is cytoplasmic and

associated with the cytoskeleton during interphase, but at

mitosis becomes nuclear and binds to mitotic spindles.(73) In

yeast, NAP 1 binds the mitotic cyclin, Cyclin B and, in the

absence of NAP 1, cells cannot carry out Cyclin B-induced

tasks at mitosis.(74,75) Thus, Lgl may have a role in cytoskeletal

alterations prior to mitosis, and with assembly of the mitotic

spindle. Whether Nap 1 interacts with mitotic cyclins in
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Drosophila, and whether it plays a role in control of cell

proliferation by Lgl remains to be determined.

Mutations in adhesion proteins
cause hyperplastic overgrowth
Within the hyperplastic class of overgrowth mutants, proteins

involved in cell±cell adhesion form the largest group. This

group includes the cadherins, catenins, and the Protein 4.1

family and, with the exception of the 4.1 family, the proteins are

located primarily in adherens junctions. The phenotypes of

mutations in adhesion proteins differ from those of the

neoplastic class in that epithelial cell integrity is generally

maintained even though the discs overgrow.

Protein 4.1 family: Merlin/NF2 and expanded. Merlin/NF2

(Mer) and expanded (ex) encode members of Protein 4.1

family that co-localize in apical cell membranes.(76) These

proteins organize the membrane actin network by linking

transmembrane proteins to the cytoskeleton. Ex is misloca-

lized in Dlg mutants, suggesting that Dlg is required to anchor it

in septate junctions.(76) Mutations in Mer and Ex cause

excessive disc growth, and Mer/ex double mutants produce

wings 30% larger than wild type.(76)

Cadherins and catenins. The transmembrane cadherins and

their cytoplasmic associates, catenins, form the core of

adherens junctions. Catenins link the cadherins with the actin

microfilament network. b-catenin, known as Armadillo (Arm) in

Drosophila, binds to the cytoplasmic tail of E-cadherin in

adherens junctions.(57) a-catenin binds to Arm, and provides a

bridge between the complex and the actin cytoskeleton.

Although in Drosophila no a-catenin mutants that cause

overgrowth exist, in mice, targeted loss of a-catenin in skin

causes hyperproliferation and disordered proliferation of

epidermal cells.(77) Arm/b-catenin is also a major effector of

the Wingless/Wnt signal transduction pathway. How much

Arm accumulates in the cell is under extremely tight regulation.

Any non-membrane-associated Arm is bound by a multi-

protein complex that includes Axin and APC, which targets

Arm for degradation. Wingless signaling blocks this process,

and allows Arm to accumulate in the cytoplasm and transduce

a nuclear signal in collaboration with the DNA-binding protein,

TCF. Activating mutations of mammalian b-catenin are highly

oncogenic, and implicated in several types of cancer.(78)

Mutations in E-cadherin are frequently associated with

invasive tumors in mice and humans; however, mutants of the

closest Drosophila homolog, DE-cadherin, do not exhibit

overgrowth phenotypes. However, other members of the

cadherin superfamily have been implicated in growth control.

The fat (ft) and fat-like mutants cause massively overgrown

discs with convoluted folds that caricature the normal folding

patterns of the disc. In ft mosaic wings, mutant clones contain

many densely packed, small cells.(79) These mutant clones

protrude out of the epithelium and produce massive extra

folds, although the expression pattern of Wingless (Wg) and

Decapentaplegic (Dpp) is not altered.(79) Another cadherin

family member, dachsous (ds), shows overgrowth phenotypes

only when in trans to other overgrowth mutants, or when

mutant cells are given a growth advantage.(79) Genetic inter-

actions between ft and ds suggest that they may physically

interact, although most cadherins engage in homophilic

interactions.(80) The cytoplasmic regions of Ft and Ds share

homology with the catenin-binding domain of vertebrate

cadherin, suggesting that they could bind b-catenin/Armadil-

lo.(80) In support of this idea, ds and ft mutations show genetic

interactions with overexpressed Arm/b-catenin.(81)

Connections between extrinsic and intrinsic

modes of growth control

In this review, we have discussed recent literature describing

genes involved in growth control in Drosophila. Many of these

genes act in distinct pathways: cell±cell communication,

control of cell identity, and regulation of protein synthesis.

Some receive input from the environment and other extrinsic

cues, and others from more local, disc-intrinsic signals. Yet all

of these genes and the pathways in which they function

participate in the developmental control of organ size and

shape. How do all of these pathways intersect? We would like

to end this review with some speculations addressing this

question.

Cell±cell communication and the cell cycle
Both the ``neoplastic'' and ``hyperplastic'' tumor suppressor

mutants cause massive disc overgrowth, yet their gene

products have different roles in cellular architecture and

intercellular communication. Do both classes of genes use

common mechanisms to regulate growth? Among these

mutants, there are no reported cases of hypertrophy, or

growth in the absence of cell division. In addition, cell

proliferation rates have not been examined in detail in many

mutants. ex mutant disc cells divide faster than normal,(82)

however, and ex and ft mutations give rise to outgrowths with

smaller cells than normal.(79,82) Thus in these two mutants at

least, cell division is stimulated at a faster rate than the cells

can grow. The genetic and biochemical interactions between

Dlg, Scrib, APC, and Cyclin E provide some clues as to how the

cell-cycle control machinery might be a target of regulation, but

how these mutants also stimulate cell growth remains a

mystery.

Why is the integrity of cellular junctional complexes so

highly correlated with control of cell proliferation? One

appealing explanation is that the junctions are required to

localize foci of signaling molecules that are essential for

growth regulation in each cell. Loss of such signaling centers

can have drastic developmental outcomes. In the nematode,

C. elegans, the EGF receptor, LET-23 is mislocalized in lin-2,

lin-7 or lin-01 mutants and, as a consequence, signaling is
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impaired and vulval development is disrupted.(83) The Lin-2,

Lin-7, and Lin-10 proteins form a ternary complex that binds

EGFR/LET-23 through the PDZ domain of Lin 7, and localizes

it to the basal-lateral plasma membrane of epithelial cells.(83)

In Drosophila, EGFR is also found in a complex with Dlg and

Scrib.(84) In addition, many Drosophila overgrowth mutants

delay developmental timing to allow for the extra growth, rather

than accelerate proliferation rates.(85) Thus, a critical role of

intact cell junctions may be to allow cells to respond appro-

priately to developmental signals.

How are growth and cell division
coordinated locally?
Experiments in yeast and Drosophila have led to the hypo-

thesis that growth can drive cell-cycle progression.(2,4,86)

However, this notion has been challenged by recent studies of

growth promoters. Increasing levels of dMyc or components of

dInr signaling substantially stimulates cell growth, but is not

sufficient to drive cell division.(21,22,87) Although the potential

for artifact always exists in over-expression experiments, a

more likely explanation is that cell-cycle progression is

controlled via two inputs: one at the G1-to-S transition by

growth regulators (such as dMyc and the dInr pathway) to

increase Cyclin E levels, and the second at the G2-to-M

transition, by developmental signals.(21,52,88,89) In mature wing

discs, where many of these experiments were carried out,

passage through G2 phase is rate limiting, and cells eventually

arrest in G2 presumably because Stg becomes scarce.(2,21,90)

In contrast, in younger discs, cells are cycling very rapidly, and

cell-cycle profiles indicate that cells spend more time in G1

than in G2.(2) Conceivably, passage through G1, controlled by

input from growth signals, is limiting for cell-cycle progression

at this stage. Consistent with this idea, in immature wing discs

both dmyc and stg/cdc25 mRNAs are expressed at high levels

fairly uniformly (LJ, unpublished). It has been proposed that

growth in imaginal discs is controlled locally through modula-

tion of dmyc and stg/cdc25 transcription by developmental

signals such as Wg.(21) Both dmyc and stg/cdc25 are under

Wg control in wing discs: as part of a developmental cell-cycle

arrest in the wing disc, expression of both dmyc and stg/cdc25

are lost in a Wg-activity-dependent fashion.(21,52) Although

stg/cdc25 expression is repressed by the activity of proneural

transcription factors induced by Wg, whether Wg regulation of

dmyc is direct or indirect remains to be determined. In

vertebrates, however, Wg signaling directly activates the

transcription of a c-myc reporter transgene.(91)

How do the intrinsic and the
extrinsic signals intersect?
A major gap in our knowledge concerns how both extrinsic and

intrinsic inputs to growth are linked during development.

However, an interesting possibility for collaboration exists

between the dInr pathway and dMyc. Some of the proteins

targeted at the post-translational level by Inr have been

identified as transcriptional targets of mammalian c-Myc,

including S6, other ribosomal proteins and the translation

initiation factor eIF-4E.(26,27) Although our knowledge of dMyc

targets is currently minimal, the vertebrate data suggest a

scenario whereby activation of dMyc will increase the number

of available substrates for the dInr pathway. In addition, the

Figure 2. Model for cooperation between two growth-
promoting pathways. Activation of Myc stimulates the

transcription of genes coding for components of the

translation machinery (indicated by grey circles); this

induction may be graded depending on the levels of Myc
activity. Upon activation, the Inr pathway post-translationally

activates the protein translation apparatus (symbolized by a

black ``P'' in a blue circle). Maximum stimulation of growth

requires high levels of Myc and Inr activity, whereas
intermediate growth may be induced by combinations of

``high Myc'' with ``low Inr'' and by ``low Myc'' with ``high Inr''.
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rather moderate transactivation potential of c-Myc suggests

that Myc might not act as a binary on/off-switch, but instead

provide a graded response to sensitize a cell for the action of a

second signal from dInr (Fig. 2). Situations may also exist

where a second signal, for example from the Inr pathway,

already acts at intermediate levels. In this case, activation of

Myc may be sufficient to trigger cell growth and division (Fig. 2).

Drosophila has been a pioneering, genetic model system

for many years, and once again leads the way in studies of

growth control during animal development. We have de-

scribed recent data regarding the cloning and characterization

of several genes involved in growth regulation, and have put

forward thoughts about how they might be linked to control

organ and animal size during development. The future holds

much promise for elucidating the control of growth at the

genetic and molecular level.
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